Quiz 2 solution

1. Write down the converse of the implication below.

$$
\text { If } f \text { and } g \text { are one-to-one, then } g \circ f \text { is one-to-one. }
$$

Define functions $f:\{1,2\} \rightarrow\{a, b, c\}$ and $g:\{a, b, c\} \rightarrow\{1,2\}$ which illustrate that the converse of the implication is false.
(10 pts.)
Solution: The converse is If $g \circ f$ is one-to-one, then both f, g are one-to one. This statement is false as exhibited by the following example: take

$$
\begin{array}{rlrl}
f:\{1,2\} & \rightarrow\{a, b, c\} & g:\{a, b, c\} & \rightarrow\{1,2\} \\
f(1) & =a & g(a) & =1 \\
f(2) & =b & g(b) & =2 \\
g(c) & =2
\end{array}
$$

Then note that f is one-to-one but g is not. Also, $g \circ f$ is one-to-one since it is the identity map on A. Therefore, the converse of the implication is false since $g \circ f$ is one-to-one but it is not the case that both f, g are.
2. Prove that if A and B are subsets of a universal set U and $A \subseteq B$, then $B^{c} \subseteq A^{c}$. (10 pts.)

Solution: Suppose $A \subseteq B$ and we want to show that $B^{c} \subseteq A^{c}$. Let x be an arbitrary element of B^{c} and we show that x belongs to A^{c}.

Since $x \in B^{c}$, the element x does not belong to B. If x belonged to A, then since $A \subseteq B$ it must be that x belongs to B as well, which is impossible. Therefore, x must not belong to A. In other words, $x \in A^{c}$, as desired.

