Practice Exam 1

1. Prove that

$$1 + 2 + 2^2 + \dots + 2^n = 2^{n+1} - 1.$$

2. Prove or disprove:

$$2+4+6+8+\cdots+2n=(n-1)(n+2).$$

3. Valid? Prove or disprove.

$$(a) \qquad \begin{array}{c} p \to q \\ q \lor r \\ \hline r \to (\neg q) \end{array} \qquad \begin{array}{c} p \to q \\ (\neg r) \lor (\neg q) \\ \hline \\ \hline (\neg p) \end{array}$$

4. Valid? Prove or disprove.

If I work hard, then I earn lots of money.

If I don't pay high taxes, then I don't work hard.

If I work hard, then I pay high taxes.

- ${f 5.}$ True or False questions.
 - (i) If $p \wedge q$ is true, then $p \vee q$ is true.
 - (ii) If $p \to q$ is true and $q \to p$ is true, then p is logically equivalent to q.
 - (iii) If \mathcal{A} is a tautology and \mathcal{B} is a contradiction, then $\mathcal{A} \wedge (\neg \mathcal{B})$ is a tautology.
 - (iv) If $\mathcal{A} \iff \mathcal{B}$ and \mathcal{C} is any statement, then $(\mathcal{A} \to \mathcal{C}) \iff (\mathcal{B} \to \mathcal{C})$.
 - (v) If the premises of an argument are all contradictions, then the argument is valid.
 - (vi) The statement $(p \to q) \leftrightarrow (q \land (r \to s))$ evaluates to TRUE when all the atomic statements p, q, r, s are true.

		20	have A drives,
		8	have 19-inch monitors,
		25	are running Windows XP,
		20	have at least two of these properties,
		6	have all three properties.
	(a) How many PCs have at least one property?		
	(b) How many have none of these properties?		
	(c) How many have exactly one?		
	` ,		
7.	How	many ways can you get	a total of 6 when rolling two dice?
8.	How	many three digit numbe	rs contain the digits 2 and 5 but not 0, 3, or 7?
9.	In a	group of 29 people, how	w many people must there be whose birthdays are in the same
-	mon		F

6. In the math department there are 30 personal computers (PCs).