Practice Exam 1

1. Prove that

$$
1+2+2^{2}+\cdots 2^{n}=2^{n+1}-1
$$

2. Prove or disprove:

$$
2+4+6+8+\cdots+2 n=(n-1)(n+2) .
$$

3. Valid? Prove or disprove.

$$
\text { (a) } \begin{aligned}
& p \rightarrow q \\
& \frac{q \vee r}{r \rightarrow(\neg q)}
\end{aligned} \quad(b) \quad \begin{gathered}
(\neg r) \vee(\neg q) \\
\end{gathered}
$$

4. Valid? Prove or disprove.

If I work hard, then I earn lots of money.
If I don't pay high taxes, then I don't work hard.
If I work hard, then I pay high taxes.
5. True or False questions.
(i) If $p \wedge q$ is true, then $p \vee q$ is true.
(ii) If $p \rightarrow q$ is true and $q \rightarrow p$ is true, then p is logically equivalent to q.
(iii) If \mathcal{A} is a tautology and \mathcal{B} is a contradiction, then $\mathcal{A} \wedge(\neg \mathcal{B})$ is a tautology.
(iv) If $\mathcal{A} \Longleftrightarrow \mathcal{B}$ and \mathcal{C} is any statement, then $(\mathcal{A} \rightarrow \mathcal{C}) \Longleftrightarrow(\mathcal{B} \rightarrow \mathcal{C})$.
(v) If the premises of an argument are all contradictions, then the argument is valid.
(vi) The statement $(p \rightarrow q) \leftrightarrow(q \wedge(r \rightarrow s)$ evaluates to TRUE when all the atomic statements p, q, r, s are true.
6. In the math department there are 30 personal computers (PCs).

$$
\begin{aligned}
20 & \text { have A drives, } \\
8 & \text { have } 19 \text {-inch monitors, } \\
25 & \text { are running Windows XP, } \\
20 & \text { have at least two of these properties, } \\
6 & \text { have all three properties. }
\end{aligned}
$$

(a) How many PCs have at least one property?
(b) How many have none of these properties?
(c) How many have exactly one?
7. How many ways can you get a total of 6 when rolling two dice?
8. How many three digit numbers contain the digits 2 and 5 but not 0,3 , or 7 ?
9. In a group of 29 people, how many people must there be whose birthdays are in the same month?

