Practice Exam 1

1. Exploring: probability, distribution, random variable, expectation. Consider the space which consists of the first 6 letters of the alphabet $S=\{a, b, c, d, e, f\}$. What does it mean to say that P is a probability on S ?
Solution: P is a probability on S if it is a function which assigns to each event $E \subseteq S$ a number $P(E) \in \mathbb{R}$ such that (note that we need S to be finite for the way we have stated the third property to be enough)

- $P(E) \geq 0$,
- $P(S)=1$,
- if $A_{1}, A_{2}, \ldots, A_{k}$ are events and $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$, then

$$
P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{k}\right)=\sum_{i=1}^{k} P\left(A_{i}\right)
$$

(i) Let P_{1} be the probability giving the uniform distribution on S. Describe P_{1}. What is $P_{1}(a)$? What is P_{1} (vowel)?
Solution: The probability which is evenly distributed across each element of the space S assigns a probability of $1 / 6$ to each of the six events. So, $P_{1}(a)=1 / 6$ and $P_{1}($ vowel $)=P(\{a, e\})=1 / 3$.
(ii) Let P_{2} be the probability for which each and any vowel has twice the probability of each and any consonant. (Hint: $P_{2}(a)=2 P_{2}(b)$, for example) What is $P_{2}(S)$? $P(b)$? What is P_{2} (vowels)? What is $P_{2}(\{a, f\})$? $P_{2}(\{a, b, c\})$?
Solution: Like every probability, $P_{2}(S)=1$. Note that $P(a)=P(e)=1 / 4$ and $P(b)=P(c)=P(d)=P(f)=1 / 8$. Now $P_{2}($ vowels $)=P_{2}(\{a, e\})=1 / 2$ and $P(\{a, f\})=3 / 8$ and $P(\{a, b, c\})=1 / 2$.
(iii) Let X be the random variable defined for $x \in S$ by

$$
X(x)= \begin{cases}0 & \text { if } x \text { is a vowel } \\ 1 & \text { if } x \text { is a consonant }\end{cases}
$$

Find $E(X)$ in the two cases, using probability P_{1} and probability P_{2} separately. Repeat for the random variable $Y(x)=i$ if x is the i-th letter of the alphabet.
Solution: $E(X)=2 / 3$ and $E(X)=1 / 2$ for P_{1} and P_{2}, respectively, and $E(Y)=$ $1 / 6+2 / 6+3 / 6+4 / 6+5 / 6+6 / 6=21 / 6=7 / 2$ and $E(Y)=1 / 4+2 / 8+3 / 8+$ $4 / 8+5 / 4+6 / 8=27 / 8$ for P_{1} and P_{2}, respectively.
2. Exploring: Probability mass function, expectation, mean, variance. Let the random variable X have the probability mass function

$$
f(x)=\frac{(|x|+1)^{2}}{9}, \quad x=-1,0,1 .
$$

(i) Recall that $f(x)=P(X=x)$. What is $P(X=1)$? What is $P(X \geq 0)$?

Solution: $P(X=1)=4 / 9$, since this is $f(1)$. Now $P(X \geq 0)=P(X=0)+P(X=$ $1)=f(0)+f(1)=1 / 9+4 / 9=5 / 9$.
(ii) Compute $E(X), E\left(X^{2}\right)$, and $E\left(3 X^{2}-2 X+4\right)$. Compute the variance σ^{2} of the random variable X. Recall $\sigma^{2}=E\left((X-\mu)^{2}\right)$ where $\mu=E(X)$.
Solution: First, $E(X)=-4 / 9+0+4 / 9=0$. Now $E\left(X^{2}\right)=\sum_{x \in S} x^{2} f(x)=8 / 9$, and so $E\left(3 X^{2}-2 X+4\right)=3 E\left(X^{2}\right)-2 E(X)+E(4)=3(8 / 9)-2(0)+4=20 / 3$. The variance is $\sigma^{2}=E\left((X-0)^{2}\right)=E\left(X^{2}\right)=8 / 9$.
(iii) Repeat the problem for f defined by $f(-1)=\frac{2}{3}, f(0)=f(1)=\frac{1}{6}$.

Solution: With this p.m.f. we have $P(X=1)=1 / 6$ and $P(X \geq 0)=1 / 3$. Also, $E(X)=-2 / 3+0+1 / 6=-1 / 6$ and $E\left(X^{2}\right)=2 / 3+0+1 / 6=5 / 6$ and $E\left(3 X^{2}-2 X+4\right)=3(2 / 3)-2(-1 / 6)+4=17 / 3$. Finally, the variance of X is $\sigma^{2}=E\left((X-\mu)^{2}\right)=E\left((X+1 / 6)^{2}\right)$, so

$$
\begin{aligned}
\sigma^{2} & =(-1+1 / 6)^{2}(2 / 3)+(0+1 / 6)^{2}(1 / 6)+(1+1 / 6)^{2}(1 / 6) \\
& =50 / 108+1 / 108+49 / 108=100 / 108 \\
& =25 / 26 .
\end{aligned}
$$

3. Exploring: counting problems, conditional probabilities, independence, mutually exclusive events. Un urn contains 10 balls: three of which are blue, and seven of which are green. Let an experiment consist of picking two balls, one at a time, from the urn without replacement. Describe the sample space of the experiment, and then find the probability of each possible outcome. Finally, let E be the event "the first ball chosen is blue" and F be the event "the second ball chosen is green".

Solution: The sample space could be defined to be $S=\{B B, B G, G B, G G\}$, for example. Then,

$$
\begin{array}{ll}
P(B B)=\frac{\binom{3}{2}}{\binom{10}{2}}=\frac{1}{15} & P(B G)=\frac{1}{10} \cdot \frac{7}{9}=\frac{7}{30} \\
P(G G)=\frac{\binom{7}{2}}{\binom{10}{2}}=\frac{7}{15} & P(G B)=\frac{7}{10} \cdot \frac{3}{9}=\frac{7}{30}
\end{array}
$$

(i) Find $P(E), P(F)$, and $P(E \cap F)$. Define mutually exclusive. Are E and F mutually exclusive?

Solution: $P(E)=P(B B)+P(B G)=1 / 15+7 / 30=3 / 10, P(F)=P(G G)+$ $P(B G)=7 / 10$, and $P(E \cap F)=P(B G)=7 / 30$. The events E and F are not mutually exclusive since two events are mutually exclusive if their intersection is empty, but $E \cap F=\{B G\}$.
(ii) Find $P(E \mid F)$. Are E and F independent events?

Solution: $P(E \mid F)=P(E \cap F) / P(F)=\frac{7 / 30}{7 / 10}=1 / 3$. The events are not independent since $P(E \mid F) \neq P(E)$. In particular, knowing that the second ball chosen was green effects the probability that the first ball chosen was blue.

