Practice Exam 3: Solutions

1. Consider the function $f(x, y)=\alpha(x+2 y)$ if $0<x, y<1$ and $f(x, y)=0$ otherwise. Find a value α such that f is a joint p.d.f. Is this choice unique? Find the marginal p.d.f.'s of X and Y. Find the covariance of X and Y. Is it possible to determine whether or not X and Y are independent only using what you just found out about the covariance?
Solution: The space of X and Y is $S=\{(x, y): 0<x<1,0<y<1\}$ and we need $\iint_{S} f(x, y) d y d x=1$. Integrating, we have

$$
\begin{aligned}
\iint_{S} f(x, y) d y d x & =\int_{0}^{1} \int_{0}^{1} \alpha(x+2 y) d y d x \\
& =\left.\alpha \int_{0}^{1}\left(x y+y^{2}\right)\right|_{0} ^{1} d x \\
& =\alpha \int_{0}^{1}(x+1) d x=\left.\alpha\left(x^{2} / 2+x\right)\right|_{0} ^{1}=3 \alpha / 2
\end{aligned}
$$

So, $\alpha=2 / 3$. The marginal p.d.f.'s of X and Y are found via integrating:

$$
\begin{aligned}
& f_{1}(x)=\int_{0}^{1} f(x, y) d y=\int_{0}^{1} .67(x+2 y) d y=.67 x y+\left..67 y^{2}\right|_{0} ^{1}=.67 x+.67 \\
& f_{2}(y)=\int_{0}^{1} f(x, y) d x=\int_{0}^{1} .67(x+2 y) d x=.67 x^{2}+\left.1.33 x y\right|_{0} ^{1}=.67+1.33 y
\end{aligned}
$$

Recall $\operatorname{Cov}\left(X_{1}, X_{2}\right)=E\left(\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right)=E\left(X_{1} X_{2}\right)-\mu_{1} \mu_{2}$, so to find the covariance $\operatorname{Cov}(X, Y)$ we will first compute $E(X Y), \mu_{1}, \mu_{2}$. We have

$$
\begin{aligned}
E\left(X_{1} X_{2}\right) & =\int_{0}^{1} \int_{0}^{1} .67 x y(x+2 y) d y d x=\int_{0}^{1} \int_{0}^{1} .67 x^{2} y+1.33 x y^{2} d y d x=.333 \\
\mu_{1} & =\int_{0}^{1} .67 x^{2}+.67 x d x=.55833 \\
\mu_{2} & =\int_{0}^{1} .67 y+1.33 y^{2} d y=.77833
\end{aligned}
$$

So, $\operatorname{Cov}(X, Y)=(1 / 3)-(5 / 9)(11 / 18)=-1 / 162=-.0062$. We know that if X_{1} and X_{2} are independent, then $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$. Thus, X and Y must not be independent, since $\operatorname{Cov}\left(X_{1}, X_{2}\right) \neq 0$. That is, $\operatorname{Cov}(X, Y) \neq 0 \Longrightarrow X$ and Y are independent.
2. State the Central Limit Theorem. A soda company has installed a new machine to fill its bottles. The machine was poorly installed, so the amount the machine dispenses has a variance (changed from standard deviation) of 0.1 liters, and the mean is 2 liters. Approximate the probability that after 40 bottles are filled that the the sample mean is at least 1.9 liters.
Solution: The Central Limit Theorem says that if \bar{X} is the mean of a random sample of size n coming from a distribution with mean μ and variance σ^{2}, and $Z=(\bar{X}-\mu) /(\sigma / \sqrt{n})$, then Z is approximately standard normal $N(0,1)$, and that the approximation is better for large values of n.
We set $Z=(\bar{X}-2) /(\sqrt{.1 / 40})$ and then $P(\bar{X} \geq 1.9)=P(Z \geq 2) \approx 1-.9772=.0228$.
3. The cumulative distribution function of a continuous random variable is given by $F(x)=$ $1-e^{-3 x}, x>0$. Find the p.d.f. of this random variable.

Solution: The p.d.f. is $F^{\prime}(x)=f(x)=3 e^{-3 x}, x>0$.
4. Cars arrive at a toll booth at a rate of 4 calls every 6 minutes. Assume these cars arrive as a Poisson process. What is the probability that the 5 th car arrives at exactly 6 minutes and 45 seconds?

Solution: The probability that the cars arrive at exactly any time is zero.
5. Let X and Y be random variables on the space $S=\{(0,0),(1,1),(1,-1),(2,0)\}$ with joint p.m.f. $f(x, y)=1 / 4$. Compute the covariance and correlation coefficient. Are X and Y independent? Can you tell if they are independent only from the correlation coefficient?

Solution: We compute $\operatorname{Cov}(X, Y)=E(X Y)-\mu_{1} \mu_{2}$ and $\rho=\operatorname{Cov}(X, Y) /\left(\sigma_{1} \sigma_{2}\right)$. We have,

$$
\begin{aligned}
\mu_{1} & =\sum_{S} x f(x, y)=(0+1+1+2) / 4=1 \\
\mu_{2} & =\sum_{S} y f(x, y)=(0+1-1+0) / 4=0 \\
E(X Y) & =\sum_{S} x y f(x, y)=(0+1-1+0) / 4=0
\end{aligned}
$$

So, $\operatorname{Cov}(X, Y)=0-1 \cdot 0=0$ and $\rho=0 /\left(\sigma_{1} \sigma_{2}\right)=0$. It is not possible to tell if X and Y are independent simply by knowing that $\operatorname{Cov}(X, Y)=0$. In fact, by observing that $X=0$ implies $Y=0$, we see that X and Y are clearly not independent (but from class if $\operatorname{Cov}(X, Y)=0$ implies that X and Y are independent).
6. Let X_{1}, \ldots, X_{8} be a random sample from a distribution having p.m.f. $f(x)=(x+1) / 6$, $x=0,1,2$. What is the p.m.f. of $Y_{1}=X_{1}+X_{2}$? What is the p.m.f. of $Y_{2}=X_{3}+X_{4}$? What about $Y=X_{1}+X_{2}+X_{3}+X_{4}$ and $W=X_{1}+\ldots+X_{8}$?
Solution: We have that the p.m.f. of $Y_{1}=X_{1}+X_{2}$ is $g(y)=\sum_{i=0}^{4} f(i) f(y-i)=f(0) f(y)+$ $f(1) f(y-1)+\ldots f(4) f(y-4)$, and note that many of these terms are often zero. In particular,

$$
\begin{aligned}
g(0) & =f(0) f(0)=1 / 36 \\
g(1) & =f(0) f(1)+f(1) f(0)=4 / 36 \\
g(2) & =f(0) f(2)+f(1) f(1)+f(2) f(0)=(3+4+3) / 36=10 / 36 \\
g(3) & =f(1) f(2)+f(2) f(1)=12 / 36 \\
g(4) & =f(2) f(2)=9 / 36
\end{aligned}
$$

Clearly, $Y_{2}=X_{3}+X_{4}$ has the same p.m.f. as that of Y_{1} and they are independent random variables. So $Y=X_{1}+X_{2}+X_{3}+X_{4}=Y_{1}+Y_{2}$ has the p.m.f. $h(y)=\sum_{i=1}^{8} g(i) g(y-i)$, where
again many of the terms might be zero depending on the choice of $y \in\{0, \ldots, 8\}$. We have

$$
\begin{aligned}
& h(0)=g(0) g(0)=1 / 6^{4} \\
& h(1)=g(0) g(1)+g(1) g(0)=8 / 6^{4} \\
& h(2)=g(0) g(2)+g(1) g(1)+g(2) g(0)=(10+16+10) / 6^{4}=36 / 6^{4} \\
& h(3)=g(0) g(3)+g(1) g(2)+g(2) g(1)+g(3) g(0)=(2 \cdot 12+2 \cdot 40) / 6^{4}=104 / 6^{4} \\
& h(4)=g(0) g(4)+g(1) g(3)+g(2) g(2)+g(3) g(1)+g(4) g(0)=(2 \cdot 9+2 \cdot 48+10) / 6^{4}=124 / 6^{4} \\
& h(5)=g(1) g(4)+g(2) g(3)+g(3) g(2)+g(4) g(1)=(2 \cdot 36+2 \cdot 120)=312 / 6^{4} \\
& h(6)=g(2) g(4)+g(3) g(3)+g(4) g(2)=(2 \cdot 90+12) / 6^{4}=192 / 6^{4} \\
& h(7)=g(3) g(4)+g(4) g(3)=216 / 6^{4} \\
& h(8)=g(4) g(4)=81 / 6^{4}
\end{aligned}
$$

Clearly, the random variable $Y^{\prime}=X_{5}+X_{6}+X_{7}+X_{8}$ has the same p.m.f. as that of Y, and Y, Y^{\prime} are independent. So, the p.m.f. of $W=X_{1}+X_{2}+\ldots+X_{8}=Y+Y^{\prime}$ is $p(w)=\sum_{i=1}^{16} h(i) h(w-i)$.
We can also unwrap all the definitions to write the p.m.f. of W as follows.

$$
\begin{aligned}
p(w) & =\sum_{i=1}^{16} h(i) h(w-i) \\
& =\sum_{i=1}^{16}\left(\sum_{j=1}^{8} g(j) g(i-j)\right)\left(\sum_{k=1}^{8} g(k) g(w-i-k)\right) \\
& =\sum_{i=1}^{16} \sum_{j=1}^{8} \sum_{k=1}^{8} g(j) g(i-j) g(k) g(w-i-k) \\
& =\sum_{i=1}^{16} \sum_{j, k=1}^{8} \sum_{l, m, n, o=1}^{4} f(l) f(j-l) f(m) f(i-j-m) f(n) f(k-n) f(o) f(w-i-k-o)
\end{aligned}
$$

