Homework 1b: Due 5/29/14

1. You roll two dice. Let X denote the sum of the dice. Compute the probability mass function $f(x)$ and plot a probability histogram.
Solution: The space of X is $S=\{2,3, \ldots, 12\}$. The p.m.f. of X is $f(x)=\frac{x-1}{36}$ for $x=2, \ldots, 7$ and $f(x)=\frac{14-x}{36}$ for $x=8, \ldots, 12$, and note that $f(x)=f(14-x)$ for $x=2, \ldots, 7$. The histogram is roughly "normal".
2. Let μ and σ^{2} denote the mean and variance of a random variable X. Determine $E[(X-\mu) / \sigma]$ and $E\left[((X-\mu) / \sigma)^{2}\right]$.
Solution: From the linearity of expectation we have $E[(X-\mu) / \sigma]=\frac{1}{\sigma}(E(X)-\mu)=0$. Also, $E\left[((X-\mu) / \sigma)^{2}\right]=\frac{1}{\sigma^{2}} E\left((X-\mu)^{2}\right)=1$.
3. A hat is filled with 6 chips. Three are blue, two are red, and one is yellow. Determine the random variable X such that $X($ blue $)=0, X($ red $)=1$, and $X($ yellow $)=2$. Assume each chip is equally likely to be drawn. Compute the mean, variance, and standard deviation of this probability distribution.
Solution: The sample space is $S=\left\{b_{1}, b_{2}, b_{3}, r_{1}, r_{2}, y\right\}$, and the random variable X is described by $X\left(b_{i}\right)=0$ for $i=1,2,3, X\left(r_{j}\right)=1$ for $j=1,2$, and $X(y)=2$. Since the distribution is uniform we have $P(x)=1 / 6$ for each $x \in S$. Computing the mean we have $E(X)=$ $3 * 0 * 1 / 6+2 * 1 * 1 / 6+1 * 2 * 1 / 6=4 / 6=2 / 3$, and the variance is
$E\left((X-\mu)^{2}\right)=3 *(2 / 3)^{2} * 1 / 6+2 *(1 / 3)^{2} * 1 / 6+(4 / 3)^{2} *(1 / 6)=(1 / 54)(12+2+16)=5 / 9$.
So the standard deviation is $\sqrt{5} / 3$.
4. In a recent poll 65% of Americans disapprove of how their government works. Suppose this is true in general about all Americans and let X be the number of people who disapprove in a random sample of size 15 . How is X distributed? Find $P(X \geq 10), P(X \leq 10)$ and $P(X=10)$. Find the mean, variance and standard deviation of X.
Solution: The probability of getting 10 people out of 15 to disagree is $\binom{15}{10}(.65)^{10}(.35)^{5}$. Similarly, the probability of getting n people out of 15 to disagree is $\binom{15}{n}(.65)^{n}(.35)^{15-n}$. Thus $P(X=10)=.212$, and

$$
P(X \geq 10)=\sum_{n=10}^{15}\binom{15}{n}(.65)^{n}(.35)^{15-n}=.564
$$

and so $P(X \leq 10)=1-(P(X \geq 10)-P(X=10))=1-(.564-.212)=1-.776=.224$.

