Homework 4: Due 6/26/14

1. Let the joint p.m.f. of X and Y be defined by

$$
f(x, y)=\frac{x+2 y}{33}, \quad x=1,2, y=1,2,3
$$

Find the marginal p.d.f. of X and that of Y. Find $P(X>Y), P(Y>X)$ and $P(X+Y=2)$. Are X and Y independent?
Solution: The marginal p.d.f.'s of X and Y are

$$
\begin{aligned}
& f_{1}(x)=\sum_{y=1,2,3} f(x, y)=\frac{3 x+12}{33} \\
& f_{2}(x)=\sum_{x=1,2} f(x, y)=\frac{3+4 y}{33}
\end{aligned}
$$

To find $P(X>Y)$ we note that $x>y$ exactly when $x=2$ and $y=1$, so $P(X>Y)=$ $f(2,1)=\frac{5}{33}$. Now $P(Y>X)=\sum_{y>x} f(x, y)=f(1,2)+f(1,3)+f(2,3)=\frac{5+7+8}{33}=\frac{20}{33}$.
Also, $P(X+Y=2)=\sum_{x+y=2} f(x, y)=f(1,1)=\frac{3}{33}$. Clearly, $f(x, y) \neq f_{1}(x) f_{2}(y)$, so X and Y are independent.
2. With the joint p.d.f. defined above in Problem 1, find the means μ_{X}, μ_{Y}, the variances $\sigma_{X}^{2}, \sigma_{Y}^{2}$ and the correlation coefficient ρ.
Solution: We compute

$$
\begin{aligned}
& \mu_{X}=\sum_{x=1,2} x f_{1}(x)=(1) \frac{15}{33}+(2) \frac{18}{33}=\frac{51}{33}, \\
& \mu_{Y}=\sum_{y=1,2,3} y f_{2}(y)=(1) \frac{7}{33}+(2) \frac{11}{33}+(3) \frac{15}{33}=\frac{74}{33} .
\end{aligned}
$$

3. Select an even integer uniformly at random from the list $\{0,2,4,6,8\}$ and then select an integer uniformly at random from the list $\{0,1,2,3,4\}$. Let X be the number selected from the first list and Y equal the sum of the two numbers. Find the joint p.m.f. of X and Y and the marginal p.d.f. of each. Are X and Y independent?
4. Let X and Y be continuous random variables with joint p.d.f.

$$
f(x, y)=2, \quad 0 \leq y \leq x \leq 1
$$

Sketch the domain of f. Find the marginal p.d.f.'s of X and Y and compute $\mu_{X}, \mu_{Y}, \sigma_{X}^{2}, \sigma_{Y}^{2}, \operatorname{Cov}(X, Y)$, and ρ.

