Homework 5: Due 7/3/14

1. Let X and Y be continuous random variables with joint/marginal p.d.f.'s

$$
\begin{array}{lr}
f(x, y)=2, & 0 \leq x \leq y \leq 1 \\
f_{1}(x)=2(1-x), & 0 \leq x \leq 1 \\
f_{2}(y)=2 y, & 0 \leq y \leq 1
\end{array}
$$

Find the conditional p.d.f. $h(y \mid x)$ and the conditional probability $P\left(\left.\frac{1}{2} \leq Y \leq \frac{3}{4} \right\rvert\, X=\frac{1}{4}\right)$. What is the expected value of Y when $X=\frac{1}{4}$?
2. Let X and Y be discrete random variables with joint p.m.f.

$$
f(x, y)=\frac{x+y}{32}, \quad x=1,2, \quad y=1,2,3,4 .
$$

Find the marginal p.m.f.'s of X and Y and the conditional p.m.f.'s $g(x \mid y)$ and $h(y \mid x)$. Find $P(1 \leq Y \leq 3 \mid X=1)$ and $P(Y \leq 2 \mid X=2)$. Finally, find $E(Y \mid X=1)$ and find $\operatorname{Var}(Y \mid X=1)$.
3. Let W equal the weight of a box of oranges which is supposed to weight $1-\mathrm{kg}$. Suppose that $P(W<1)=.05$ and $P(W>1.05)=.1$. Call a box of oranges light, good, or heavy depending on if $W<1,1 \leq W \leq 1.05$, or $W>1.05$, respectively. In $n=50$ independent observations of these boxes, let X equal the number of light boxes and Y the number of good boxes.

Find the joint p.m.f. of X and Y. How is Y distributed? Name the distribution and state the values of the parameters associated to this distribution. Given $X=3$, how is Y distributed? Determine $E(Y \mid X=3)$ and find the correlation coefficient ρ of X and Y.
4. Let X have the uniform distribution $U(0,2)$ and let the conditional distribution of Y, given that $X=x$, be $U(0, x)$. Find the joint p.d.f. $f(x, y)$ of X and Y, and be sure to state the domain of $f(x, y)$. Find $E(Y \mid x)$.
5. The support of a random variable X is the set of x-values such that $f(x) \neq 0$. Given that X has p.d.f. $f(x)=x^{2} / 3,-1<x<2$, what is the support of X^{2} ? Find the p.m.f. of the random variable $Y=X^{2}$.
6. Let X_{1}, X_{2} denote two independent random variables each with the $\chi^{2}(2)$ distribution. Find the joint p.d.f. of $Y_{1}=X_{1}$ and $Y_{2}=X_{1}+X_{2}$. What is the support of Y_{1}, Y_{2} (i.e., what is the domain of the joint p.d.f., where $\left.f\left(y_{1}, y_{2}\right) \neq 0\right)$? Are Y_{1} and Y_{2} independent?

