Homework 5: Due 7/3/14

1. Let X and Y be continuous random variables with joint/marginal p.d.f.'s

 $f(x, y) = 2, 0 \le x \le y \le 1,$ $f_1(x) = 2(1 - x), 0 \le x \le 1,$ $f_2(y) = 2y, 0 \le y \le 1.$

Find the conditional p.d.f. h(y|x) and the conditional probability $P\left(\frac{1}{2} \le Y \le \frac{3}{4} \mid X = \frac{1}{4}\right)$. What is the expected value of Y when $X = \frac{1}{4}$?

2. Let X and Y be discrete random variables with joint p.m.f.

$$f(x,y) = \frac{x+y}{32}, \qquad x = 1, 2, \quad y = 1, 2, 3, 4.$$

Find the marginal p.m.f.'s of X and Y and the conditional p.m.f.'s g(x|y) and h(y|x). Find $P(1 \leq Y \leq 3 \mid X = 1)$ and $P(Y \leq 2 \mid X = 2)$. Finally, find $E(Y \mid X = 1)$ and find $Var(Y \mid X = 1)$.

3. Let W equal the weight of a box of oranges which is supposed to weight 1-kg. Suppose that P(W < 1) = .05 and P(W > 1.05) = .1. Call a box of oranges light, good, or heavy depending on if W < 1, $1 \le W \le 1.05$, or W > 1.05, respectively. In n = 50 independent observations of these boxes, let X equal the number of light boxes and Y the number of good boxes.

Find the joint p.m.f. of X and Y. How is Y distributed? Name the distribution and state the values of the parameters associated to this distribution. Given X = 3, how is Y distributed? Determine $E(Y \mid X = 3)$ and find the correlation coefficient ρ of X and Y.

4. Let X have the uniform distribution U(0,2) and let the conditional distribution of Y, given that X = x, be U(0,x). Find the joint p.d.f. f(x,y) of X and Y, and be sure to state the domain of f(x,y). Find E(Y|x). 5. The support of a random variable X is the set of x-values such that $f(x) \neq 0$. Given that X has p.d.f. $f(x) = x^2/3$, -1 < x < 2, what is the support of X^2 ? Find the p.m.f. of the random variable $Y = X^2$.

6. Let X_1, X_2 denote two independent random variables each with the $\chi^2(2)$ distribution. Find the joint p.d.f. of $Y_1 = X_1$ and $Y_2 = X_1 + X_2$. What is the support of Y_1, Y_2 (i.e., what is the domain of the joint p.d.f., where $f(y_1, y_2) \neq 0$)? Are Y_1 and Y_2 independent?