Homework 5: Due 7/3/14

1. Let X and Y be continuous random variables with joint/marginal p.d.f.'s

$$
\begin{array}{lr}
f(x, y)=2, & 0 \leq x \leq y \leq 1 \\
f_{1}(x)=2(1-x), & 0 \leq x \leq 1 \\
f_{2}(y)=2 y, & 0 \leq y \leq 1
\end{array}
$$

Find the conditional p.d.f. $h(y \mid x)$ and the conditional probability $P\left(\left.\frac{1}{2} \leq Y \leq \frac{3}{4} \right\rvert\, X=\frac{1}{4}\right)$. What is the expected value of Y when $X=\frac{1}{4}$?
Solution: The conditional p.d.f $h(y \mid x)=f(x, y) / f_{1}(x)$ is immediately seen to be

$$
h(y \mid x)=\frac{2}{2(1-x)}=\frac{1}{1-x} .
$$

To find $P\left(\left.\frac{1}{2} \leq Y \leq \frac{3}{4} \right\rvert\, X=\frac{1}{4}\right)$ we integrate the conditional p.d.f. $h\left(y \left\lvert\, \frac{1}{4}\right.\right)$ on the interval $1 / 2 \leq y \leq 3 / 4$, and we obtain

$$
P\left(\left.\frac{1}{2} \leq Y \leq \frac{3}{4} \right\rvert\, X=\frac{1}{4}\right)=\int_{1 / 2}^{3 / 4} \frac{1}{1-\frac{1}{4}} d y=\frac{1}{4}\left(\frac{1}{\frac{3}{4}}\right)=\frac{1}{3}
$$

Since expectation is linear, we have $E\left(Y \left\lvert\, X=\frac{1}{4}\right.\right)=E(4 / 3)=4 / 3$.
2. Let X and Y be discrete random variables with joint p.m.f.

$$
f(x, y)=\frac{x+y}{32}, \quad x=1,2, \quad y=1,2,3,4 .
$$

Find the marginal p.m.f.'s of X and Y and the conditional p.m.f.'s $g(x \mid y)$ and $h(y \mid x)$. Find $P(1 \leq Y \leq 3 \mid X=1)$ and $P(Y \leq 2 \mid X=2)$. Finally, find $E(Y \mid X=1)$ and find $\operatorname{Var}(Y \mid X=1)$.
Solution: The marginal p.m.f.'s of X and Y are immediately seen to be

$$
\begin{aligned}
& f_{1}(x)=\sum_{y=1,2,3,4} f(x, y)=\frac{4 x+10}{32} \\
& f_{2}(y)=\sum_{x=1,2} f(x, y)=\frac{3+2 y}{32}
\end{aligned}
$$

The conditional p.m.f.'s are thus seen to be

$$
\begin{aligned}
& h(y \mid x)=\frac{f(x, y)}{f_{1}(x)}=\frac{(x+y) / 32}{(4 x+10) / 32}=\frac{x+y}{4 x+10}, \\
& g(x \mid y)=\frac{f(x, y)}{f_{2}(y)}=\frac{(x+y) / 32}{(3+2 y) / 32}=\frac{x+y}{3+2 y} .
\end{aligned}
$$

Also, we have

$$
P(1 \leq Y \leq 3 \mid X=1)=\sum_{y=1,2,3} h(y \mid 1)=\frac{2}{14}+\frac{3}{14}+\frac{4}{14}=\frac{9}{14}
$$

Note, this can also be computed as $1-h(4 \mid 1)=1-\frac{5}{14}=\frac{9}{14}$. Next, we compute

$$
P(Y \leq 2 \mid X=2)=\sum_{y=1,2} h(y \mid 2)=\frac{2+1}{18}+\frac{2+2}{18}=\frac{7}{18} .
$$

Finally, we have that

$$
E(Y \mid X=1)=\sum_{y=1,2,3,4} y \cdot h(y \mid 1)=(1) \frac{2}{14}+(2) \frac{3}{14}+(3) \frac{4}{14}+(4) \frac{4}{14}=\frac{18}{7}
$$

and

$$
\operatorname{Var}(Y \mid X=1)=E\left(Y^{2} \mid X=1\right)-E(Y \mid X=1)=\frac{57}{7}-\left(\frac{18}{7}\right)^{2}=1.503
$$

3. Let W equal the weight of a box of oranges which is supposed to weight $1-\mathrm{kg}$. Suppose that $P(W<1)=.05$ and $P(W>1.05)=.1$. Call a box of oranges light, good, or heavy depending on if $W<1,1 \leq W \leq 1.05$, or $W>1.05$, respectively. In $n=50$ independent observations of these boxes, let X equal the number of light boxes and Y the number of good boxes.
Find the joint p.m.f. of X and Y. How is Y distributed? Name the distribution and state the values of the parameters associated to this distribution. Given $X=3$, how is Y distributed? Determine $E(Y \mid X=3)$ and find the correlation coefficient ρ of X and Y.
Solution: The random variables are said to come from a trinomial distribution in this case since there are three exhaustive and mutually exclusive outcomes light, good, or heavy, having probabilities $p_{1}=.05, p_{2}=.85$, and $p_{3}=.1$, respectively. It is easy to see that the trinomial p.m.f. in this case is

$$
f(x, y)=\frac{50!}{x!y!(50-x-y)!} p_{1}^{x} p_{2}^{y} p_{3}^{50-x-y}
$$

That is, $f(x, y)$ is exactly the joint p.m.f. of X and Y, the number of light boxes and good boxes, where $p_{1}=.05, p_{2}=.85$, and $p_{3}=.1$ are the various probabilities of each of the three events: light, good, and heavy.
The random variable is binomially distributed, but the parameters of the distribution depend on the value of the random variable X. We have that the random variable Y is (conditionally) binomially distributed $\mathrm{b}\left(n-x, \frac{p_{2}}{1-p_{1}}\right)$ since the marginal distributions of X, Y are $\mathrm{b}\left(n, p_{1}\right)$, $\mathrm{b}\left(n, p_{2}\right)$ and the conditional p.m.f. of Y is thus, with $n=50$,

$$
\begin{aligned}
h(y \mid x) & =f(x, y) \frac{1}{f_{1}(x)}=\frac{n!}{x!y!(n-x-y)!} p_{1}^{x} p_{2}^{y} p_{3}^{n-x-y} \cdot \frac{x!(n-x)!}{n!} \frac{1}{p_{1}^{x}\left(1-p_{1}\right)^{n-x}} \\
& =\frac{n!x!(n-x)!}{x!y!(n-x-y)!n!} \cdot \frac{p_{1}^{x}}{p_{1}^{x}} \cdot \frac{p_{2}^{y}}{\left(1-p_{1}\right)^{y}} \cdot \frac{p_{3}^{n-x-y}}{\left(1-p_{1}\right)^{n-x}\left(1-p_{1}\right)^{-y}} \\
& =\frac{(n-x)!}{y!(n-x-y)!}\left(\frac{p_{2}}{1-p_{1}}\right)^{y}\left(\frac{p_{3}}{1-p_{1}}\right)^{n-x-y} .
\end{aligned}
$$

In this case, with the specified values of n, p_{1}, p_{2}, and p_{3}, we have for $X=3$

$$
h(y \mid 3)=\frac{47!}{y!(47-y)!}(.8947)^{y}(.1053)^{47-y}
$$

so that Y is conditionally $\mathrm{b}(47, .8947)$ when $X=3$. Since $\mu=n p$ for binomial distribution, we have that $E(Y \mid X=3)=(47)(.8947)=42.05$.
It is not hard to see that in fact $E(Y \mid x)=(n-x) \frac{p_{2}}{1-p_{1}}$ in general, and that a similar formula holds for $E(X \mid y)$. The correlation coefficient is now found using the fact that since each of
the conditional expectations $E(Y \mid x)=(n-x) \frac{p_{2}}{1-p_{1}}$ and $E(X \mid y)=(n-y) \frac{p_{1}}{1-p_{2}}$ is linear, then the square of the correlation coefficient ρ^{2} is equal to the product of the respective coefficients of x and y in the conditional expectations.

$$
\rho^{2}=\left(\frac{-p_{2}}{1-p_{1}}\right)\left(\frac{-p_{1}}{1-p_{2}}\right)=\frac{p_{1} p_{2}}{\left(1-p_{1}\right)\left(1-p_{2}\right)}
$$

from which it follows that

$$
\rho=\sqrt{-\sqrt{\frac{p_{1} p_{2}}{\left(1-p_{1}\right)\left(1-p_{2}\right)}}}=-.0819 .
$$

The fact that the correlation coefficient is negative follows from the fact that, for example,

$$
E(Y \mid x)=\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right)
$$

and noting that the coefficient of x in $E(Y \mid x)$ is seen to be negative (and also $\sigma_{Y}, \sigma_{X}>0$).
4. Let X have the uniform distribution $U(0,2)$ and let the conditional distribution of Y, given that $X=x$, be $U(0, x)$. Find the joint p.d.f. $f(x, y)$ of X and Y, and be sure to state the domain of $f(x, y)$. Find $E(Y \mid x)$.

Solution: We have that

$$
f(x, y)=\frac{y}{x}, \quad 0<x \leq 2,0 \leq y \leq x
$$

Now,

$$
E(Y \mid x)=\int_{0}^{x} y \cdot \frac{y}{x} d x=\left.\frac{1}{3 x} y^{3}\right|_{0} ^{x}=\frac{x^{2}}{3}
$$

5. The support of a random variable X is the set of x-values such that $f(x) \neq 0$. Given that X has p.d.f. $f(x)=x^{2} / 3,-1<x<2$, what is the support of X^{2} ? Find the p.m.f. of the random variable $Y=X^{2}$.

Solution: The p.d.f. $g(y)$ of $Y=X^{2}$ is obtained as follows. We note that the possible y-values that can be obtained are in the range $0 \leq y \leq 4$, so the support of $g(y)$ needs to be the interval $[0,4]$. Now, on the interval $[1,4]$, there is a one-to-one transformation represented by $x=\sqrt{y}$. We first find $G(y)=P(Y \leq y)=P\left(X^{2} \leq y\right)=P(X \leq \sqrt{y})$ for $X=x$ in [1, 2], corresponding to $Y=y$ in $[1,4]$. We have

$$
G(y)=\int_{1}^{\sqrt{y}} f(x) d x=\int_{1}^{\sqrt{y}} \frac{x^{2}}{3} d x
$$

and in particular $g(y)=G^{\prime}(y)=\frac{(\sqrt{y})^{2}}{3} \cdot(\sqrt{y})^{\prime}$, from the chain rule and the Fundamental Theorem of Calculus. Simplifying, we have $g(y)=\frac{\sqrt{y}}{6}, 1<y<4$.
In order to find $g(y)$ on $0<y<1$, we need to work a little harder. For x in the interval $-1<$ $x<1$ there is a two-to-one transformation given by $x=-\sqrt{y}$ for $-1<x<0$, and $x=\sqrt{y}$ for $0<x<1$. We then calculate $G(y)$ for $0<y<1$ (i.e., $-1<x<1$) as before, but now using two integrals $G(y)=P(Y \leq y)=P\left(X^{2} \leq y\right)=P(-\sqrt{y}<X<0)+P(0<X<\sqrt{y})$, so for y in the interval $0<y<1$ we have

$$
G(y)=\int_{-\sqrt{y}}^{0} f(x) d x+\int_{0}^{\sqrt{y}} f(x) d x
$$

Again, from the chain rule and the Fundamental Theorem of Calculus we have

$$
g(y)=G^{\prime}(y)=-f(-\sqrt{y}) \cdot(-\sqrt{y})^{\prime}+f(\sqrt{y}) \cdot(\sqrt{y})^{\prime}=\frac{-y}{3} \cdot \frac{-1}{2 \sqrt{y}}+\frac{y}{3} \cdot \frac{1}{2 \sqrt{y}}=\frac{\sqrt{y}}{3}
$$

So,

$$
g(y)= \begin{cases}\sqrt{y} / 3 & \text { if } 0<y<1 \\ \sqrt{y} / 6 & \text { if } 1<y<4\end{cases}
$$

There is no problem defining $g(0)=g(1)=0$, or even just leaving the p.d.f. undefined at the points $y=0$ and $y=1$.
6. Let X_{1}, X_{2} denote two independent random variables each with the $\chi^{2}(2)$ distribution. Find the joint p.d.f. of $Y_{1}=X_{1}$ and $Y_{2}=X_{1}+X_{2}$. What is the support of Y_{1}, Y_{2} (i.e., what is the domain of the joint p.d.f., where $\left.f\left(y_{1}, y_{2}\right) \neq 0\right)$? Are Y_{1} and Y_{2} independent?
Solution: We have that X_{1}, X_{2} have the same p.d.f.

$$
h(x)=\frac{1}{2} e^{-x / 2}, \quad 0 \leq x<\infty
$$

corresponding to the $\chi^{2}(r)$ distribution with $r=2$ degrees of freedom. By the way, this is the same as saying that X_{1}, X_{2} follow exponential distributions with $\theta=2$. Since X_{1}, X_{2} are independent, the joint p.d.f. of X_{1} and X_{2} is

$$
f\left(x_{1}, x_{2}\right)=h\left(x_{1}\right) h\left(x_{2}\right)=\frac{1}{4} e^{-\left(x_{1}+x_{2}\right) / 2} .
$$

The change of variables formula is $g\left(y_{1}, y_{2}\right)=|J| f\left(v_{1}\left(y_{1}, y_{2}\right), v_{2}\left(y_{1}, y_{2}\right)\right)$ using the determinant of the Jacobian

$$
J=\left|\begin{array}{ll}
\frac{\partial v_{1}\left(x_{1}, x_{2}\right)}{\partial y_{1}} & \frac{\partial v_{1}\left(x_{1}, x_{2}\right)}{\partial y_{2}} \\
\frac{\partial v_{2}\left(x_{1}, x_{2}\right)}{\partial y_{1}} & \frac{\partial v_{2}\left(x_{1}, x_{2}\right)}{\partial y_{2}}
\end{array}\right|
$$

where $v_{i}\left(y_{1}, y_{2}\right)$ is the inverse of $u_{i}, Y_{i}=u_{i}\left(X_{1}, X_{2}\right), i=1,2$. In this case, $Y_{1}=u_{1}\left(X_{1}, X_{2}\right)=$ X_{1}, so $X_{1}=v_{1}\left(Y_{1}, Y_{2}\right)=Y_{1}$, and $Y_{2}=u_{2}\left(X_{1}, X_{2}\right)=X_{1}+X_{2}$, so $X_{2}=v_{2}\left(Y_{1}, Y_{2}\right)=Y_{2}-Y_{1}$. Hence,

$$
|J|=\left|\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right|=1
$$

so the joint p.d.f. of Y_{1} and Y_{2} is

$$
g\left(y_{1}, y_{2}\right)=|1| f\left(y_{1}, y_{2}-y_{1}\right)=\frac{1}{4} e^{-y_{2} / 2}, \quad 0 \leq y_{1} \leq y_{2}<\infty .
$$

To determine if Y_{1} and Y_{2} are independent we compute the marginal p.d.f.'s. We have,

$$
g_{1}\left(y_{1}\right)=\int_{0}^{y_{2}} \frac{1}{4} e^{-y_{2} / 2} d y_{1}=\frac{y_{2}}{4} e^{-y_{2} / 2}
$$

and

$$
g_{2}\left(y_{2}\right)=\int_{y_{1}}^{\infty} \frac{1}{4} e^{-y_{2} / 2} d y_{2}=\left.\frac{-1}{2} e^{-y_{2} / 2}\right|_{y_{1}} ^{\infty}=\frac{1}{2} e^{-y_{1} / 2}
$$

Since, $g\left(y_{1}, y_{2}\right) \neq g_{1}\left(y_{1}\right) g_{2}\left(y_{2}\right), Y_{1}$ and Y_{2} are dependent.

