Homework 5b: Due 7/10/14

1. Let X_{1}, X_{2}, X_{3} be a random sample from a distribution with p.d.f. $f(x)=2 e^{-2 x}, 0<x<\infty$. This means that X_{1}, X_{2}, X_{3} are independent random variables each with the same p.d.f. $f(x)$, or said even another way that they are independent identically distributed random variables (written i.i.d.). Find the probability $P\left(0<X_{1}<2,2<X_{2}<4,4<X_{3}<6\right)$. What is the joint p.d.f. of X_{1}, X_{2}, X_{3} ? What is the probability that exactly one of X_{1}, X_{2}, X_{3} is in the range $0<x<2$ and exactly one is in the range $2<x<4$ and exactly one is in the range $4<x<6$?
2. Let X_{1}, X_{2} be independent random variables with respective binomial distributions $b(3, .25)$ and $b(4, .5)$. Find $P\left(X_{1}=2, X_{2}=3\right)$ and $P\left(X_{1}+X_{2}=5\right)$.
3. Let X_{1}, X_{2}, X_{3} be i.i.d. random variables with Poisson distributions with mean $\lambda=3$. Find the moment generating function of $Y=X_{1}+X_{2}+X_{3}$. How is Y distributed?
4. Let \bar{X} denote the mean of a random sample of size 25 from a distribution whose p.d.f. is $f(x)=x^{3} / 4,0<x<2$. It is easy to show that $\mu=8 / 5$ and $\sigma^{2}=8 / 75$. Use the central limit theorem to approximate $P(1.4<\bar{X}<1.7)$.
5. Let $X_{i}, 1 \leq i \leq n$ be a random sample of size n from the continuous uniform distribution $U(0,1)$ with p.d.f. $f(x)=1$. Find the mean μ_{i} and variance σ_{i}^{2} of $X_{i}, 1 \leq i \leq n$. Find the mean and variance of $\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}$. Approximate $P(\bar{X} \leq n / 2)$ using the central limit theorem.
