Homework 5b: Due 7/10/14

1. Let X_1, X_2, X_3 be a random sample from a distribution with p.d.f. $f(x) = 2e^{-2x}$, $0 < x < \infty$. This means that X_1, X_2, X_3 are independent random variables each with the same p.d.f. f(x), or said even another way that they are independent identically distributed random variables (written i.i.d.). Find the probability $P(0 < X_1 < 2, 2 < X_2 < 4, 4 < X_3 < 6)$. What is the joint p.d.f. of X_1, X_2, X_3 ? What is the probability that exactly one of X_1, X_2, X_3 is in the range 0 < x < 2 and exactly one is in the range 2 < x < 4 and exactly one is in the range 4 < x < 6?

2. Let X_1, X_2 be independent random variables with respective binomial distributions b(3, .25) and b(4, .5). Find $P(X_1 = 2, X_2 = 3)$ and $P(X_1 + X_2 = 5)$.

3. Let X_1, X_2, X_3 be i.i.d. random variables with Poisson distributions with mean $\lambda = 3$. Find the moment generating function of $Y = X_1 + X_2 + X_3$. How is Y distributed?

4. Let \bar{X} denote the mean of a random sample of size 25 from a distribution whose p.d.f. is $f(x) = x^3/4$, 0 < x < 2. It is easy to show that $\mu = 8/5$ and $\sigma^2 = 8/75$. Use the central limit theorem to approximate $P(1.4 < \bar{X} < 1.7)$.

5. Let X_i , $1 \le i \le n$ be a random sample of size n from the continuous uniform distribution U(0,1) with p.d.f. f(x) = 1. Find the mean μ_i and variance σ_i^2 of X_i , $1 \le i \le n$. Find the mean and variance of $\bar{X} = \frac{X_1 + \dots + X_n}{n}$. Approximate $P(\bar{X} \le n/2)$ using the central limit theorem.