Homework 5b: Due 7/10/14

1. Let X_{1}, X_{2}, X_{3} be a random sample from a distribution with p.d.f. $f(x)=2 e^{-2 x}, 0<x<\infty$. This means that X_{1}, X_{2}, X_{3} are independent random variables each with the same p.d.f. $f(x)$, or said even another way that they are independent identically distributed random variables (written i.i.d.). Find the probability $P\left(0<X_{1}<2,2<X_{2}<4,4<X_{3}<6\right)$. What is the joint p.d.f. of X_{1}, X_{2}, X_{3} ? What is the probability that exactly one of X_{1}, X_{2}, X_{3} is in the range $0<x<2$ and exactly one is in the range $2<x<4$ and exactly one is in the range $4<x<6$?

Solution: We have that the joint p.d.f. of X_{1}, X_{2}, X_{3} is $f\left(x_{1}, x_{2}, x_{3}\right)=f\left(x_{1}\right) f\left(x_{2}\right) f\left(x_{3}\right)=$ $2^{3} e^{-2\left(x_{1}+x_{2}+x_{3}\right)}$, since the random variables are independent. Hence,

$$
P\left(0<X_{1}<2,2<X_{2}<4,4<X_{3}<6\right)=\int_{0}^{2} \int_{2}^{4} \int_{4}^{6} 2^{3} e^{-2\left(x_{1}+x_{2}+x_{3}\right)} d x_{3} d x_{2} d x_{1}=5.8 \times 10^{-6} .
$$

To find the probability that exactly one variable is in the specified range, we multiply by $3!=6$, which is the number of permutations of the three variables, and hence get that this probability is 3.49×10^{-5}.
2. Let X_{1}, X_{2} be independent random variables with respective binomial distributions $b(3, .25)$ and $b(4, .5)$. Find $P\left(X_{1}=2, X_{2}=3\right)$ and $P\left(X_{1}+X_{2}=5\right)$.
Solution: Since X_{1}, X_{2} are independent, the joint p.m.f. $f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)$, where $f_{1}\left(x_{1}\right)=(.25)^{x_{1}}(.75)^{1-x_{1}}$ and $f_{2}\left(x_{2}\right)=(.5)^{x_{2}}(.5)^{1-x_{2}}$. We have $f_{1}(2)=.0469$ and $f_{2}\left(x_{2}\right) \equiv$ $(.5)^{4}=.0625$. So $f(2,3)=.0029$.
3. Let X_{1}, X_{2}, X_{3} be i.i.d. random variables with Poisson distributions with mean $\lambda=3$. Find the moment generating function of $Y=X_{1}+X_{2}+X_{3}$. How is Y distributed?
Solution: We use the fact from class that the moment generating function $M(t)$ of $Y=$ $X_{1}+X_{2}+X_{3}$ is the product of the moment generating functions of X_{1}, X_{2}, X_{3}, so

$$
M(t)=\left(e^{3\left(e^{t}-1\right)}\right)^{3}=e^{9\left(e^{t}-1\right)}
$$

Since $M(t)$ is the moment generating function of a Poisson distribution with $\lambda=9$, this is distribution of Y.
4. Let \bar{X} denote the mean of a random sample of size 25 from a distribution whose p.d.f. is $f(x)=x^{3} / 4,0<x<2$. It is easy to show that $\mu=8 / 5$ and $\sigma^{2}=8 / 75$. Use the central limit theorem to approximate $P(1.4<\bar{X}<1.7)$.
Solution: From the central limit theorem, the random variable \bar{X} is approximately normally distributed with mean $\mu=$ and variance $\sigma^{2} / n=.0043$. Hence, the standard deviation of \bar{X} is .0653. We define the (approximately) standard normal variable $Z=(\bar{X}-1.6) / .0653$ and look up in the table

$$
\begin{aligned}
P(1.4<\bar{X}<1.7) & =P\left(\frac{1.4-1.6}{.0653}<Z<\frac{1.7-1.6}{.0653}\right) \\
& \approx P(-3.0628<Z<1.534) \\
& =P(Z<1.534)-P(Z<-3.0628) \\
& =.9382-(1-.9989)=.9371 .
\end{aligned}
$$

5. Let $X_{i}, 1 \leq i \leq n$ be a random sample of size n from the continuous uniform distribution $U(0,1)$ with p.d.f. $f(x)=1$. Find the mean μ_{i} and variance σ_{i}^{2} of $X_{i}, 1 \leq i \leq n$. Find the mean and variance of $\bar{X}=\frac{X_{1}+\cdots+X_{n}}{n}$. Approximate $P(\bar{X} \leq n / 2)$ using the central limit theorem.

Solution: The mean of X_{i} is $\mu_{i}=\frac{a+b}{2}=.5$ for $i=1, \ldots, n$, and the mean of \bar{X} is also $\mu=\sum_{i=1}^{n} \frac{1}{n} .5=.5$. The variance of X_{i} is $\sigma_{i}^{2}=\frac{(b-a)^{2}}{12}=1 / 12$ for $i=1, \ldots, n$, and the variance of \bar{X} is $\sum_{i=1}^{n} \frac{1}{n^{2}} 1 / 12=1 /(12 n)$. Now, \bar{X} is approximately normal $N(.5,1 /(12 n))$, so the random variable $Z=(\bar{X}-\mu) / \sigma$ is approximately standard normal $N(0,1)$. Hence,

$$
\begin{gathered}
P(\bar{X} \leq n / 2)=P(Z \leq(n / 2-.5) /(1 / \sqrt{12 n})) \\
P(Z \leq \sqrt{12 n}(n / 2-1 / 2)) \\
P\left(Z \leq \sqrt{3}\left(n^{1.5}-n^{.5}\right)\right)
\end{gathered}
$$

