Quiz 5

1. A certain fast food chain is doing a promotion where whenever you buy a hamburger you get one of three stickers, and if you collect all three stickers you win free hamburgers for a year. Suppose the three stickers are called A, B, C and the probability of a certain sticker being A, B, or C is $p_{1}=.12, p_{2}=.85$, and $p_{3}=.03$, respectively. If I buy 100 hamburgers and have 100 stickers, what is the probability that 10 of them are A and 5 of them are C stickers?
(10 pts.)
Solution: The joint p.m.f. of X_{1}, X_{2}, X_{3} the number of stickers of type A, B, C, respectively, is given by the joint p.m.f. of a trinomial distribution with $n=100$,

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\frac{100!}{x_{1}!x_{2}!x_{3}!}(.12)^{x_{1}}(.85)^{x_{2}}(.03)^{x_{3}}, \quad x_{1}+x_{2}+x_{3}=100
$$

So, the probability that $X_{1}=10$ and $X_{3}=5$ is given by

$$
f(10,85,5)=\frac{100!}{10!85!5!}(.12)^{10}(.85)^{85}(.03)^{5}=. .01146 .
$$

2. Let X be a continuous random variable with p.d.f. $f(x)=|x|,-1<x<1$. What is the p.d.f. $g(y)$ of $Y=X^{2}$? Be sure to state the support of g. How is Y distributed?
Solution: We first find the cumulative distribution function $G(y)$ of Y.

$$
G(y)=P(Y \leq y)=P\left(X^{2} \leq y\right)=P(-\sqrt{y} \leq X \leq \sqrt{y})=\int_{-\sqrt{y}}^{\sqrt{y}}|x| d x
$$

To deal with this integral we need to split it up into two pieces, since $f(x)=|x|$ is defined piecewise. We have

$$
\begin{aligned}
G(y) & =\int_{-\sqrt{y}}^{\sqrt{y}}|x| d x \\
& =\int_{-\sqrt{y}}^{0}-(x) d x+\int_{0}^{\sqrt{y}} x d x \\
& =\int_{0}^{-\sqrt{y}} x d x+\int_{0}^{\sqrt{y}} x d x=\frac{(-\sqrt{y})^{2}}{2}+\frac{(\sqrt{y})^{2}}{2}=y .
\end{aligned}
$$

So, $G(y)=y$, and hence $g(y)=G^{\prime}(y)=1$, for $0<y<1$. Hence, $Y \sim \mathrm{U}(0,1)$ is uniformly distributed on the interval $(0,1)$.

