Group Quiz 6

You may work in groups, ask the instructor for the help, use books or notes or the internet. Any calculator can be used on this quiz.

1. Let W_{1}, W_{2} be independent random variables with the Cauchy distribution defined by having the Cauchy p.d.f.

$$
h(w)=\frac{1}{\pi\left(1+w^{2}\right)}, \quad-\infty<x<\infty .
$$

This problem will help us to find the p.d.f. of the sample mean $Y=\left(W_{1}+W_{2}\right) / 2$ using convolutions. First, by doing a change of variables show that the p.d.f. of $X_{i}=W_{i} / 2, i=1,2$, is

$$
f(x)=\frac{2}{\pi\left(1+4 x^{2}\right)}, \quad-\infty<x<\infty
$$

Let $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1}$ and show that the joint p.d.f. of Y_{1}, Y_{2} is

$$
g\left(y_{1}, y_{2}\right)=f\left(y_{1}-y_{2}\right) f\left(y_{2}\right), \quad-\infty<y_{1}, y_{2}<\infty
$$

Finally show that

$$
g_{1}\left(y_{1}\right)=\int_{-\infty}^{\infty} f\left(y_{1}-y_{2}\right) f\left(y_{2}\right) d y_{2}
$$

is the p.d.f. of Y_{1}, and conclude that $g_{1}(y)$ is the p.d.f. of Y.
Solution: Using the change of variables formula, the p.d.f. of $X_{i}=W_{i} / 2, i=1,2$, is

$$
f_{i}(x)=h(2 x) \cdot(2 x)^{\prime}=\frac{2}{\pi\left(1+(2 x)^{2}\right)}=\frac{2}{\pi\left(1+4 x^{2}\right)},
$$

since $w=2 x$ is the inverse function of $x=w / 2$. Next, the Jacobian corresponding to the linear change of variables $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1}$ is

$$
J=\left|\begin{array}{ll}
\frac{\partial v_{1}}{\partial y_{1}} & \frac{\partial v_{1}}{\partial y_{2}} \\
\frac{\partial v_{2}}{\partial y_{1}} & \frac{\partial v_{2}}{\partial y_{2}}
\end{array}\right|=\left|\begin{array}{rr}
0 & 1 \\
1 & -1
\end{array}\right|=-1,
$$

where $v_{1}\left(y_{1}, y_{2}\right)=y_{2}$ and $v_{2}\left(y_{1}, y_{2}\right)=y_{1}-y_{2}$. Since X_{1} and X_{2} are independent (remember that W_{1}, W_{2} were), from the change of variables formula the joint p.d.f. of Y_{1} and Y_{2} is

$$
g\left(y_{1}, y_{2}\right)=|-1| f\left(y_{2}, y_{1}-y_{2}\right)=f_{1}\left(y_{2}\right) f_{2}\left(y_{1}-y_{2}\right)
$$

as desired. Writing $f=f_{i}$, for $i=1,2$, to get the marginal p.d.f. for Y_{1} we integrate away the Y_{2} variable,

$$
g_{1}\left(y_{1}\right)=\int_{-\infty}^{\infty} g\left(y_{1}, y_{2}\right) d y_{2}=\int_{-\infty}^{\infty} f\left(y_{2}\right) f\left(y_{1}-y_{2}\right) d y_{2}
$$

2. Let X_{1}, X_{2} be independent random variables which are exponentially distributed with parameters λ_{1}, λ_{2}, respectively. Find the p.d.f. of $Y=X_{1}+X_{2}$ using the convolution formula

$$
f * g(x)=\int_{a}^{b} f(t) g(t-x) d t
$$

Hint: make the necessary modifications to your argument from Problem \#1.
Solution: Let $f_{i}\left(x_{i}\right)=\lambda_{i} e^{-\lambda_{i} x_{i}}$ be the marginal p.d.f. of $X_{i}, i=1,2$. We have that the p.d.f. g of $Y=X_{1}+X_{2}$ is given by the convolution formula $g=f_{1} * f_{2}$,

$$
\begin{aligned}
g(y) & =f_{1} * f_{2}(y) \\
& =\int_{0}^{\infty} f_{1}(t) f_{2}(t-y) d t \\
& =\int_{0}^{\infty} \lambda_{1} e^{-\lambda_{1} t} \cdot \lambda_{2} e^{-\lambda_{2}(t-y)} d t \\
& =\int_{0}^{\infty} \lambda_{1} \lambda_{2} e^{-\left(\lambda_{1} t+\lambda_{2}(t-y)\right)} d t . \quad=\frac{\lambda_{1} \lambda_{2}}{-\lambda_{1}-\lambda_{2}} e^{-\left(\lambda_{1} t+\lambda_{2}(t-y)\right)}
\end{aligned}
$$

3. Approximate $P(39.75 \leq \bar{X} \leq 41.25)$, where \bar{X} is the mean of a random sample of size 28 from a distribution with mean $\mu=40$ and variance $\sigma^{2}=4$.
Solution: We use the central limit theorem with $Z=(\bar{X}-\mu) /(\sigma / \sqrt{n})$,

$$
\begin{aligned}
P(39.75 \leq \bar{X} \leq 41.25) & =P\left(\frac{39.75-40}{(2 / \sqrt{28})} \leq Z \leq \frac{41.25-40}{(2 / \sqrt{28})}\right) \\
& =P(-.66 \leq Z \leq 3.31) \\
& \approx 1-(1-.7454)=.7454 .
\end{aligned}
$$

4. A random sample of size $n=18$ is taken from a distribution with p.d.f. $f(x)=1-.5 x$, $0 \leq x \leq 2$. Approximate $P(.66 \leq \bar{X} \leq .83)$.

Solution: First note that the mean of the random variable X with p.d.f. $f(x)$ above is found in the usual way, $\mu=\int_{0}^{2} x f(x) d x=\int_{0}^{2} x(1-.5 x) d x=\int_{0}^{2}\left(x-.5 x^{2}\right) d x=(1 / 2) x^{2}-\left.(1 / 6) x^{3}\right|_{0} ^{2}=$ $2-8 / 6=2 / 3$. Similarly, it is easy to see that $\sigma^{2}=.222$. Setting $Z=(\bar{X}-\mu) /(\sigma / \sqrt{n})$, we have that Z is approximately standard normally distributed. So

$$
\begin{aligned}
P(.66 \leq \bar{X} \leq .83) & =P(-.01 \leq Z \leq 1.47) \\
& \approx .9292-(1-.5080)=.4372 .
\end{aligned}
$$

5. Let X equal the weight of individual apple coming out of a particular barrel of apples. Suppose that $E(X)=24$ and $\operatorname{Var}(X)=2.2$. Let \bar{X} be the sample mean of a random sample of $n=20$ apples. Find $E(\bar{X}), \operatorname{Var}(\bar{X})$, and approximate $P(23 \leq \bar{X} \leq 24)$.
Solution: We have $E(\bar{X})=24$ and $\operatorname{Var}(\bar{X})=\sum_{i=1}^{20} \frac{1}{n^{2}} 2.2=2.2 / 20=$.11. Setting $Z=$ $(\bar{X}-24) /(\sqrt{.11})$, we have that Z is approximately standard normal, so $P(23 \leq \bar{X} \leq 24)=$ $\left.P\left(\frac{23-24}{\sqrt{.11}}\right) \leq Z \leq 0\right)=P(-.3015 \leq Z \leq 0) \approx .5-(1-.6179)=. .1179$.
