Math 1552, Integral Calculus Section 8.7: Numerical Integration

Let θ be an angle in radians, $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$, so that $\tan \theta=\frac{1}{2}$.
We can find the value of θ using the integral:

$$
\theta=\tan ^{-1}\left(\frac{1}{2}\right)=\int_{0}^{1 / 2} \frac{1}{1+x^{2}} d x
$$

1. Estimate the value of θ with the trapezoidal rule using $n=4$ subintervals.
2. Using the formula for error in the Trapezoidal rule, estimate the largest possible error for your answer to problem 1.
3. The actual value is approximately 0.46365 . What is the actual error, and the percent error in your estimate in problem 1?
4. Estimate the value of θ with Simpson's rule using $n=6$ subintervals.
