Math 1552, Integral Calculus Section 8.7: Numerical Integration

Let θ be an angle in radians, $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$, so that $\tan \theta=\frac{1}{2}$.
We can find the value of θ using the integral:

$$
\theta=\tan ^{-1}\left(\frac{1}{2}\right)=\int_{0}^{1 / 2} \frac{1}{1+x^{2}} d x
$$

1. Estimate the value of θ with the trapezoidal rule using $n=4$ subintervals.

Solution: Here, $\Delta x=\frac{1}{8}$, so we will divide the interval into subintervals $\left[0, \frac{1}{8}\right]$, $\left[\frac{1}{8}, \frac{1}{4}\right]$, $\left[\frac{1}{4}, \frac{3}{8}\right]$, and $\left[\frac{3}{8}, \frac{1}{2}\right]$. Then applying the Trapezoidal rule using $f(x)=\frac{1}{1+x^{2}}$ gives:

$$
T_{4}=\frac{1}{2} \cdot \frac{1}{8}\left[f(0)+2 f\left(\frac{1}{8}\right)+2 f\left(\frac{1}{4}\right)+2 f\left(\frac{3}{8}\right)+f\left(\frac{1}{2}\right)\right] \approx 0.46281 .
$$

2. Using the formula for error in the Trapezoidal rule, estimate the largest possible error for your answer to problem 1.
Solution: We first need to find the largest value for $\left|f^{\prime \prime}(c)\right|$ on the interval $\left[0, \frac{1}{2}\right]$. Note that for $f(x)=\frac{1}{1+x^{2}}$, the second derivative is $f^{\prime \prime}(x)=\frac{2\left(3 x^{2}-1\right)}{\left(1+x^{2}\right)^{3}}$. The absolute value of this function is decreasing on the interval $\left[0, \frac{1}{2}\right]$ (taking the third derivative can check that formally), so we reach the maximum value when $x=0$. Thus, we have:

$$
\left|f^{\prime \prime}(c)\right| \leq\left|f^{\prime \prime}(0)\right|=2
$$

Using the formula for error in the Trapezoidal Rule, we can now solve:

$$
\begin{aligned}
\left|E_{4}^{T}\right| & \leq \frac{|b-a|^{3}}{12 n^{2}} \cdot \max \left|f^{\prime \prime}(c)\right| \\
& =\frac{\left(\frac{1}{2}-0\right)^{3}}{12 \cdot 4^{2}} \cdot 2 \\
& =\frac{1}{768} \approx 0.0013 .
\end{aligned}
$$

3. The actual value is approximately 0.46365 . What is the percent error in your estimate in problem 1?
Solution: Actual error is $0.46365-0.46281=0.00084$.
The percent error is:

$$
\frac{0.46365-0.46281}{0.46365} \times 100 \approx 0.18 \%
$$

4. Estimate the value of θ with Simpson's rule using $n=6$ subintervals.

Solution: With $n=6$, the endpoints are $0, \frac{1}{12}, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{5}{12}$, and $\frac{1}{2}$ and $\Delta x=\frac{1}{12}$. So:

$$
S_{6}=\frac{1}{3} \cdot \frac{1}{12}\left[f(0)+4 f\left(\frac{1}{12}\right)+2 f\left(\frac{1}{6}\right)+4 f\left(\frac{1}{4}\right)+2 f\left(\frac{1}{3}\right)+4 f\left(\frac{5}{12}\right)+f\left(\frac{1}{2}\right)\right] \approx 0.46365 .
$$

Note that we get almost the exact answer with this approximation.

