Math 1552, Integral Calculus

Sections 10.3-10.5: Convergence Tests

Determine whether the following series converge or diverge. Justify your answers using the tests we discussed in class.

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{3^{2 k}}{8^{k}-3} \tag{1}
\end{equation*}
$$

Solution: Note that $8^{k}-3<8^{k}$, and thus $\frac{1}{8^{k}-3}>\frac{1}{8^{k}}$, so we have:

$$
\frac{3^{2 k}}{8^{k}-3}>\frac{3^{2 k}}{8^{k}}=\left(\frac{9}{8}\right)^{k}
$$

Since the series $\sum\left(\frac{9}{8}\right)^{k}$ is a geometric series with $r=\frac{9}{8}>1$, it DIVERGES. Since our original series is bigger, it also DIVERGES by the Basic Comparison Test.

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{k+2}{\sqrt{k^{5}+4}} \tag{2}
\end{equation*}
$$

Solution: Note that $k^{5}+4>k^{5}$, and thus $\sqrt{k^{5}+4}>\sqrt{k^{5}}=k^{5 / 2}$. Then:

$$
\frac{k+2}{\sqrt{k^{5}+4}}<\frac{k+2}{k^{5 / 2}}
$$

Also note that for $k \geq 2, k+2 \leq 2 k$, so we can write:

$$
\frac{k+2}{\sqrt{k^{5}+4}}<\frac{2 k}{k^{5 / 2}}=2 \cdot \frac{1}{k^{3 / 2}}
$$

Since the series $\sum_{k=2}^{\infty} \frac{1}{k^{3 / 2}}$ is a p-series with $p>1$, it converges, and thus $2 \cdot \sum_{k=2}^{\infty} \frac{1}{k^{3 / 2}}$ also converges. Our original series is smaller, so we see by the Basic Comparison Test that $\sum_{k=2}^{\infty} \frac{k+2}{\sqrt{k^{5}+4}}$ also converges. We can always add a finite number of terms to a convergent series to obtain another convergent series, and thus the series $\sum_{k=1}^{\infty} \frac{k+2}{\sqrt{k^{5}+4}}$ must also converge.

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^{3}} \tag{3}
\end{equation*}
$$

Solution: Since $\frac{d}{d x}[\ln x]=\frac{1}{x}$, the integral test looks like a good tool here. As $k \geq 2$, $\ln k>0$, so the function is continuous and positive. Let's check that it is also decreasing. Set $f(x)=\frac{1}{x(\ln x)^{3}}$. Then:

$$
f^{\prime}(x)=\frac{-(\ln x)^{3}-3(\ln x)^{2}}{x^{2}(\ln x)^{6}}
$$

Note that since we are taking $x \geq 2$ and $\ln x>0, f^{\prime}(x)<0$. Now we can apply the integral test. Letting $u=\ln x$ and $d u=\frac{1}{x}$, we have:

$$
\begin{aligned}
\int_{2}^{\infty} \frac{d x}{x(\ln x)^{3}} & =\lim _{N \rightarrow \infty} \int_{\ln 2}^{\ln N} \frac{d u}{u^{3}} \\
& =\lim _{N \rightarrow \infty}-\left.\frac{1}{2 u^{2}}\right|_{\ln 2} ^{\ln N} \\
& =\lim _{N \rightarrow \infty}-\frac{1}{2}\left[\frac{1}{(\ln N)^{2}}-\frac{1}{(\ln 2)^{2}}\right] \\
& =\frac{1}{2(\ln 2)^{2}}
\end{aligned}
$$

which is a finite number. Thus the integral and the series both converge.

