Math 1552, Integral Calculus

Section 10.4: Comparison and Limit Comparison Tests

Determine whether the following series converge or diverge. Justify your answers using any of the tests we discussed in class.

$$
\begin{equation*}
\sum_{k=1}^{\infty} k \tan \left(\frac{1}{k}\right) \tag{1}
\end{equation*}
$$

Using the divergence test, note that:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n \tan \left(\frac{1}{n}\right) & =\lim _{n \rightarrow \infty} \frac{\tan \left(\frac{1}{n}\right)}{\frac{1}{n}} \\
& \equiv \lim _{n \rightarrow \infty} \frac{-\frac{1}{n^{2}} \sec ^{2}\left(\frac{1}{n}\right)}{-\frac{1}{n^{2}}} \\
& =\sec ^{2}(0)=1 \neq 0
\end{aligned}
$$

so the series diverges.

$$
\begin{equation*}
\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\ldots \tag{2}
\end{equation*}
$$

First, let's rewrite the series in summation notation:

$$
\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+. .=\sum_{k=1}^{\infty} \frac{1}{(2 k-1)(2 k+1)}
$$

We will use the limit comparison test with the series $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$, which converges since it is a p-series with $p=2>1$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{n^{2}}{(2 n-1)(2 n+1)} \\
& =\lim _{n \rightarrow \infty} \frac{n^{2}}{4 n^{2}-1} \\
& =\frac{1}{4}
\end{aligned}
$$

Since $0<\frac{1}{4}<\infty$, the series $\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\ldots$ must also converge.

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}-1}} \tag{3}
\end{equation*}
$$

Using the Limit Comparison Test, comparing to $\sum \frac{1}{n^{2}}$, which converges (p-series with $p=2>1)$:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{1}{n \sqrt{n^{2}-1}} \cdot \frac{n^{2}}{1} \\
& =\lim _{n \rightarrow \infty} \frac{\sqrt{n^{4}}}{\sqrt{n^{2}} \sqrt{n^{2}-1}} \\
& =\lim _{n \rightarrow \infty} \sqrt{\frac{n^{4}}{n^{4}-n^{2}}} \\
& =\sqrt{\lim _{n \rightarrow \infty} \frac{n^{4}}{n^{4}-n^{2}}} \\
& =\sqrt{1}=1
\end{aligned}
$$

Since $0<1<\infty$, both series must converge.

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\ln k}{k^{4}} \tag{4}
\end{equation*}
$$

Solution: Since $\ln k<k$ when $k>1$, we can see that:

$$
\frac{\ln k}{k^{4}}<\frac{k}{k^{4}}=\frac{1}{k^{3}}
$$

As $\sum \frac{1}{k^{3}}$ is a convergent p-series, the series will converge by the basic comparison test. Alternately, one could also show convergence using the integral test.

