Math 1552, Integral Calculus

Section 10.4: Comparison and Limit Comparison Tests

Determine whether the following series converge or diverge. Justify your answers using

any of the tests we discussed in class.
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Using the divergence test, note that:
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so the series diverges.
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First, let’s rewrite the series in summation notation:
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We will use the limit comparison test with the series >/~ k—lz, which converges since it is

a p-series with p =2 > 1.
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Since 0 < L < 0o, the series & + =& + L + ... must also converge.
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Using the Limit Comparison Test, comparing to > #, which converges (p-series with

p=2>1)
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Since 0 < 1 < 0o, both series must converge.
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Solution: Since Ink < k£ when k£ > 1, we can see that:
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As > k% is a convergent p-series, the series will converge by the basic comparison test.

Alternately, one could also show convergence using the integral test.



