Math 1552, Integral Calculus Review of Derivative/Anti-derivative Formulas

1. Find the derivative of each function below. DO NOT SIMPLIFY YOUR ANSWER.
(a) $s(t)=t^{2} \csc ^{3}(5 t) \sec ^{5}(8 t)$
(b) $g(x)=\frac{3 x^{1 / 4} e^{1 / x}}{\left(x^{4}-\frac{1}{3 x}\right)^{5}\left(3 x^{2}+2\right)^{4}}$
2. Find an antiderivative for the function $f(x)=3 \cos x+\frac{1}{4 x^{2}}$.
3. A particle travels with a velocity given by $v(t)=-\frac{1}{3} t^{2}+4 t+2$, where position is measured in meters and time in seconds.
(a) Find the acceleration of the particle when $t=1$ second.
(b) If the initial position is 4 m , find the position of the particle at $t=1$ second.

Answers

1.

(a) $s^{\prime}(t)=2 t \csc ^{3}(5 t) \sec ^{5}(8 t)-15 t^{2} \csc ^{3}(5 t) \cot (5 t) \sec ^{5}(8 t)+40 t^{2} \csc ^{3}(5 t) \sec ^{5}(8 t) \tan (8 t)$
(b) $g^{\prime}(x)=\frac{3 x^{1 / 4} e^{1 / x}}{\left(x^{4}-\frac{1}{3 x}\right)^{5}\left(3 x^{2}+2\right)^{4}}\left[\frac{1}{4 x}-\frac{1}{x^{2}}-\frac{5\left(4 x^{3}+\frac{1}{3 x^{2}}\right)}{x^{4}-\frac{1}{3 x}}-\frac{24 x}{3 x^{2}+2}\right]$
2. $F(x)=3 \sin x-\frac{1}{4 x}$
3. (a) $\frac{10}{3} \mathrm{~m} / \mathrm{s}^{2}$, (b) $7 \frac{8}{9} \mathrm{~m}$

