Review for Test 3

Math 1552, Integral Calculus

Sections 8.8, 10.1-10.5

1. Terminology review: complete the following statements.
(a) A geometric series has the general form
\qquad . The series converges when \qquad and diverges when \qquad
(b) A p-series has the general form \qquad The series converges when \qquad and diverges when \qquad To show these results, we can use the \qquad test.
(c) The harmonic series \qquad and telescoping series \qquad
(d) If you want to show a series converges, compare it to a \qquad series that also converges. If you want to show a series diverges, compare it to a \qquad series that also diverges.
(e) If the direct comparison test does not have the correct inequality, you can instead use the \qquad test. In this test, if the limit is a \qquad number (not equal to \qquad), then both series converge or both series diverge.
(f) In the ratio and root tests, the series will \qquad if the limit is less than 1 and
\qquad if the limit is greater than 1 . If the limit equals 1 , then the test is \qquad
(g) If $\lim _{n \rightarrow \infty} a_{n}=0$, then what do we know about the series $\sum_{k} a_{k}$? \qquad
(h) An integral is improper if either one or both limits of integration are \qquad or the function has a \qquad on the interval $[a, b]$.
(i) A sequence is an infinite \qquad of terms.

A sequence $\left\{a_{n}\right\}$ converges if: \qquad
(j) The smallest value that is greater than or equal to every term in a sequence is called the \qquad The largest value that is less than or equal to every term in the sequence is called the \qquad _. If both of these values are finite, then we say the sequence is
(k) A sequence is called monotonic if the terms are \qquad or \qquad . If a sequence is both monotonic and bounded, then we know it must
2. Sum the series

$$
\sum_{k=2}^{\infty} \frac{4^{2 k}-1}{17^{k-1}}
$$

3. Find the sum of the series

$$
\sum_{k=1}^{\infty} \frac{1}{(2 k-1)(2 k+3)} .
$$

4. Determine whether the following series converge or diverge. Justify your answers using the tests we discussed in class.
(a) $\sum_{k=1}^{\infty} \frac{e^{k}}{\left(1+4 e^{k}\right)^{3.2}}$
(b) $\sum_{k=2}^{\infty}\left(\frac{k-5}{k}\right)^{k^{2}}$
(c) $\sum_{k=1}^{\infty} \frac{k^{2} \cdot 2^{k+1}}{k!}$
(d) $\sum_{k=1}^{\infty} \frac{1}{1+2+3+\ldots+k}$
5. For each sequence, determine: (i) the l.u.b. and g.l.b.; (ii) whether the sequence is monotonic; (iii) whether the series converges or diverges, and the limit if it is convergent. (a) $\left\{\left(\frac{n}{n+2}\right)^{3 n}\right\}$
(b) $\left\{\frac{\cos (n \pi)}{4^{n}}\right\}$
(c) $\left\{(-1)^{n} \frac{n+2}{n+4}\right\}$
6. Determine if the improper intergral converges or diverges. If it converges, evaluate the integral.
(a)

$$
\int_{2}^{\infty} \frac{x}{\left(x^{2}-1\right)^{3 / 2}} d x
$$

(b)

$$
\int_{0}^{2} \frac{d x}{x^{2}-5 x+6}
$$

