Math 1552, Integral Calculus Section 5.1: Riemann Sums

1. (Applying the Riemann Sum) You are driving when all of a sudden, you see traffic stopped in front of you. You slam the brakes to come to a stop. While your brakes are applied, the velocity of the car is measured, and you obtain the following measurements:

$$
\begin{array}{lrrrrrr}
\text { Time since applying breaks (sec) } & 0 & 1 & 2 & 3 & 4 & 5 \\
\text { Velocity of car (in ft/sec) } & 88 & 60 & 40 & 25 & 10 & 0
\end{array}
$$

Using the points given, determine upper and lower bounds for the total distance traveled before the car came to a stop. (Answers: Upper bound is 223 ft; Lower bound is 135 ft)
2. Consider the function $f(x)=x+2 x^{2}$ on the interval [0,2]. Using a midpoint estimate with $n=4$ subintervals, estimate the average value of f. (Answers: Midpoint estimate is 7.25 units 2, so the average value is approximately $3 \frac{5}{8}$)

