Math 1552, Integral Calculus Sections 5.2-5.3: The Definite Integral

1. (Applying the Definite Integral) A marketing company is trying a new campaign. The campaign lasts for three weeks, and during this time, the company finds that it gains customers as a function of time according to the formula:

$$C(t) = 5t - t^2,$$

where t is time in weeks and the number of customers is given in thousands. Using the general form of the definite integral,

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \frac{b-a}{n} \sum_{i=1}^{n} f(x_i^*),$$

calculate the **average** number of customers gained during the three-week campaign. Solution: First, note that since average value is defined as $AV = \frac{1}{b-a} \int_a^b f(x) dx$, we can use the Riemann sum formula to obtain (the term b - a will cancel):

$$AV = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} C(x_i^*).$$

In this problem, a = 0 and b = 3. Breaking the interval into n equal pieces would give $\Delta x = \frac{3}{n}$. To find each right-hand endpoint, we can set:

$$x_i^* = a + i\Delta x = 0 + \frac{3i}{n} = \frac{3i}{n},$$

and thus

$$C(x_i^*) = 5\left(\frac{3i}{n}\right) - \left(\frac{3i}{n}\right)^2 = \frac{15}{n}i - \frac{9}{n^2}i^2.$$

Now plugging into the summation:

$$\begin{split} \sum_{i=1}^{n} C(x_{i}^{*}) &= \sum_{i=1}^{n} \left(\frac{15}{n}i - \frac{9}{n^{2}}i^{2} \right) \\ &= \frac{15}{n} \sum_{i=1}^{n} i - \frac{9}{n^{2}} \sum_{i=1}^{n}i^{2} \\ &= \frac{15}{n} \cdot \frac{n(n+1)}{2} - \frac{9}{n^{2}} \cdot \frac{n(n+1)(2n+1)}{6} \\ &= \frac{15(n+1)}{2} - \frac{9(n+1)(2n+1)}{6n}. \end{split}$$

Using this expression, we can now find average value:

$$AV = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} C(x_i^*)$$

= $\lim_{n \to \infty} \frac{1}{n} \left(\frac{15(n+1)}{2} - \frac{9(n+1)(2n+1)}{6n} \right)$
= $\lim_{n \to \infty} \left(\frac{15(n+1)}{2n} - \frac{9(n+1)(2n+1)}{6n^2} \right)$
= $\frac{15}{2} - \frac{18}{6}$
= 4.5,

so the company gained an average of 4,500 customers weekly during the campaign.

2. Explain why the following property is true:

$$|\int_{a}^{b} f(x)dx| \leq \int_{a}^{b} |f(x)|dx.$$

Can you find an example where the inequality is strict?

Solution: Note that $|\int_a^b f(x)dx|$ represents "absolute net area," while $\int_a^b |f(x)|dx$ is "total area." In general, *total* area $\geq |net$ area|.

For an example where the inequality is strict, let f(x) = x on the interval [-1, 2]. If you draw a picture, we can find the area geometrically (all triangles). The area of the triangle from 0 to 2 is 2, and the area of the triangle from -1 to 0 is $-\frac{1}{2}$ (dips below the x-axis), so:

$$\left|\int_{-1}^{2} x dx\right| = \frac{3}{2}, \quad \int_{-1}^{2} |x| dx = \frac{5}{2}.$$

3. Evaluate $\int_0^2 |x - 1| dx$ using integral properties from class (you may use geometry, or a Riemann Sum).

Solution: Draw a picture. Note that $\int_0^1 |x - 1| dx = \int_1^2 |x - 1| dx$, so $\int_0^2 |x - 1| dx = 2 \int_0^1 |x - 1| dx$.

Using geometry, we can draw the triangle from 0 to 1 to see the area is $\frac{1}{2} \cdot 1 \cdot 1 = \frac{1}{2}$, so: $\int_0^2 |x - 1| dx = 2 \cdot \frac{1}{2} = 1.$

Alternately, using Riemann Sums, we will break the interval [0, 1] into n subintervals of length $\Delta x = \frac{1}{n}$, and endpoints $x_i = \frac{i}{n}$. Taking $x_i^* = \frac{i}{n}$ as the right-hand endpoint of each interval, $1 \le i \le n$, we see the area of each rectangle is $f(x_i^*)\Delta x = \left|\frac{i}{n} - 1\right| \frac{1}{n}$. As $1 \ge \frac{i}{n}$, $\left|\frac{i}{n} - 1\right| = 1 - \frac{i}{n}$, and thus:

$$\int_{0}^{2} |x-1| dx = 2 \int_{0}^{1} |x-1| dx$$

= $2 \lim_{n \to \infty} \sum_{i=1}^{n} \left(1 - \frac{i}{n}\right) \frac{1}{n}$
= $2 \lim_{n \to \infty} \frac{1}{n} \left(\sum_{i=1}^{n} 1 - \frac{1}{n} \sum_{i=1}^{n} i\right)$
= $2 \lim_{n \to \infty} \frac{1}{n} \left(n - \frac{1}{n} \cdot \frac{n(n+1)}{2}\right)$
= $2 \lim_{n \to \infty} \left(1 - \frac{n+1}{2n}\right)$
= $2 \cdot \left(1 - \frac{1}{2}\right) = 1.$