Math 1552, Integral Calculus
Sections 5.2-5.3: The Definite Integral

1. (Applying the Definite Integral) A marketing company is trying a new campaign. The
campaign lasts for three weeks, and during this time, the company finds that it gains
customers as a function of time according to the formula:

C(t) = 5t — 2,

where t is time in weeks and the number of customers is given in thousands.
Using the general form of the definite integral,
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calculate the average number of customers gained during the three-week campaign.

Solution: First, note that since average value is defined as AV = ﬁ ff f(x)dz, we can
use the Riemann sum formula to obtain (the term b — a will cancel):

AV = lim 1 ZC’(@)
=1

n—oo M, 4

In this problem, a = 0 and b = 3. Breaking the interval into n equal pieces would give
Ar = % To find each right-hand endpoint, we can set:
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Using this expression, we can now find average value:
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=4.5,

so the company gained an average of 4,500 customers weekly during the campaign.



2. Explain why the following property is true:

|/abf(:v)d:z:| < /ab () da

Can you find an example where the inequality is strict?

Solution: Note that | f: f(x)dx| represents ”absolute net area,” while fab | f(x)|dz is " total
area.” In general, total area > |net areal.

For an example where the inequality is strict, let f(z) = x on the interval [—1,2]. If you
draw a picture, we can find the area geometrically (all triangles). The area of the triangle
from 0 to 2 is 2, and the area of the triangle from -1 to 0 is —% (dips below the z-axis), so:
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3. Evaluate f02 |x — 1|dx using integral properties from class (you may use geometry, or a
Riemann Sum).

Solution: Draw a picture. Note that fol |lr — 1|dz = f12 |z — 1|dz, so f02 |lr — 1|dz =
2f01 |z — 1|dz.

Using geometry, we can draw the triangle from 0 to 1 to see the area is % -1-1= %, So:
JZle—1lde=2-1=1.

Alternately, using Riemann Sums, we will break the interval [0, 1] into n subintervals of
length Ax = %, and endpoints z; = % Taking =} = % as the right-hand endpoint of each
interval, 1 < i < n, we see the area of each rectangle is f(z})Az = }% — 1} % As 1> %,
i 1} =1- %, and thus:
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