Math 1552, Integral Calculus Sections 5.2-5.3: The Definite Integral

1. (Applying the Definite Integral) A marketing company is trying a new campaign. The campaign lasts for three weeks, and during this time, the company finds that it gains customers as a function of time according to the formula:

$$
C(t)=5 t-t^{2}
$$

where t is time in weeks and the number of customers is given in thousands. Using the general form of the definite integral,

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(x_{i}^{*}\right)
$$

calculate the average number of customers gained during the three-week campaign.
Solution: First, note that since average value is defined as $A V=\frac{1}{b-a} \int_{a}^{b} f(x) d x$, we can use the Riemann sum formula to obtain (the term $b-a$ will cancel):

$$
A V=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} C\left(x_{i}^{*}\right)
$$

In this problem, $a=0$ and $b=3$. Breaking the interval into n equal pieces would give $\Delta x=\frac{3}{n}$. To find each right-hand endpoint, we can set:

$$
x_{i}^{*}=a+i \Delta x=0+\frac{3 i}{n}=\frac{3 i}{n},
$$

and thus

$$
C\left(x_{i}^{*}\right)=5\left(\frac{3 i}{n}\right)-\left(\frac{3 i}{n}\right)^{2}=\frac{15}{n} i-\frac{9}{n^{2}} i^{2}
$$

Now plugging into the summation:

$$
\begin{aligned}
\sum_{i=1}^{n} C\left(x_{i}^{*}\right) & =\sum_{i=1}^{n}\left(\frac{15}{n} i-\frac{9}{n^{2}} i^{2}\right) \\
& =\frac{15}{n} \sum_{i=1}^{n} i-\frac{9}{n^{2}} \sum_{i=1}^{n} i^{2} \\
& =\frac{15}{n} \cdot \frac{n(n+1)}{2}-\frac{9}{n^{2}} \cdot \frac{n(n+1)(2 n+1)}{6} \\
& =\frac{15(n+1)}{2}-\frac{9(n+1)(2 n+1)}{6 n} .
\end{aligned}
$$

Using this expression, we can now find average value:

$$
\begin{aligned}
A V & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} C\left(x_{i}^{*}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{15(n+1)}{2}-\frac{9(n+1)(2 n+1)}{6 n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{15(n+1)}{2 n}-\frac{9(n+1)(2 n+1)}{6 n^{2}}\right) \\
& =\frac{15}{2}-\frac{18}{6} \\
& =4.5
\end{aligned}
$$

so the company gained an average of 4,500 customers weekly during the campaign.
2. Explain why the following property is true:

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

Can you find an example where the inequality is strict?
Solution: Note that $\left|\int_{a}^{b} f(x) d x\right|$ represents "absolute net area," while $\int_{a}^{b}|f(x)| d x$ is "total area." In general, total area $\geq \mid$ net area|.
For an example where the inequality is strict, let $f(x)=x$ on the interval $[-1,2]$. If you draw a picture, we can find the area geometrically (all triangles). The area of the triangle from 0 to 2 is 2 , and the area of the triangle from -1 to 0 is $-\frac{1}{2}$ (dips below the x-axis), so:

$$
\left|\int_{-1}^{2} x d x\right|=\frac{3}{2}, \quad \int_{-1}^{2}|x| d x=\frac{5}{2}
$$

3. Evaluate $\int_{0}^{2}|x-1| d x$ using integral properties from class (you may use geometry, or a Riemann Sum).
Solution: Draw a picture. Note that $\int_{0}^{1}|x-1| d x=\int_{1}^{2}|x-1| d x$, so $\int_{0}^{2}|x-1| d x=$ $2 \int_{0}^{1}|x-1| d x$.
Using geometry, we can draw the triangle from 0 to 1 to see the area is $\frac{1}{2} \cdot 1 \cdot 1=\frac{1}{2}$, so: $\int_{0}^{2}|x-1| d x=2 \cdot \frac{1}{2}=1$.
Alternately, using Riemann Sums, we will break the interval $[0,1]$ into n subintervals of length $\Delta x=\frac{1}{n}$, and endpoints $x_{i}=\frac{i}{n}$. Taking $x_{i}^{*}=\frac{i}{n}$ as the right-hand endpoint of each interval, $1 \leq i \leq n$, we see the area of each rectangle is $f\left(x_{i}^{*}\right) \Delta x=\left|\frac{i}{n}-1\right| \frac{1}{n}$. As $1 \geq \frac{i}{n}$, $\left|\frac{i}{n}-1\right|=1-\frac{i}{n}$, and thus:

$$
\begin{aligned}
\int_{0}^{2}|x-1| d x & =2 \int_{0}^{1}|x-1| d x \\
& =2 \lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1-\frac{i}{n}\right) \frac{1}{n} \\
& =2 \lim _{n \rightarrow \infty} \frac{1}{n}\left(\sum_{i=1}^{n} 1-\frac{1}{n} \sum_{i=1}^{n} i\right) \\
& =2 \lim _{n \rightarrow \infty} \frac{1}{n}\left(n-\frac{1}{n} \cdot \frac{n(n+1)}{2}\right) \\
& =2 \lim _{n \rightarrow \infty}\left(1-\frac{n+1}{2 n}\right) \\
& =2 \cdot\left(1-\frac{1}{2}\right)=1
\end{aligned}
$$

