Math 1553: Intro to Linear Algebra
 Sections 2.8-2.9: Basis and Subspaces

Name:

1. Let $\mathbf{v}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}2 \\ -1 \\ -2\end{array}\right]$. Find a vector \mathbf{x} in \Re^{3} so that the set $\{\mathbf{v}, \mathbf{w}, \mathbf{x}\}$ is a basis for \Re^{3}.
2. Find the coordinates of the vector $\mathbf{v}=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]$ subject to the basis of \Re^{3} given by $S=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 3\end{array}\right]\right\}$.
3. Determine if the following statements are always true or sometimes false. If the statement is false, explain why.
(a) The empty set is a subspace of \Re^{n}.
(b) The set of all vectors \mathbf{b} such that $A \mathbf{x}=\mathbf{b}$, where \mathbf{x} is any vector in \Re^{n} and A is an $m \times n$ matrix, is a subspace of \Re^{m}.
(c) For any set of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in R^{n}, \operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right)$ is closed under scalar multiplication and addition.
4. For the matrix below, determine: (i) the rank and nullity; and (ii) a basis for the column space and nullspace.

$$
\left[\begin{array}{ccccc}
1 & 4 & 5 & 6 & 9 \\
3 & -2 & 1 & 4 & -1 \\
-1 & 0 & -1 & -2 & -1 \\
2 & 3 & 5 & 7 & 8
\end{array}\right]
$$

