Math 1552, Integral Calculus Section 8.7: Numerical Integration

Let θ be an angle in radians, $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, so that $\tan \theta = \frac{1}{2}$. We can find the value of θ using the integral:

$$\theta = \tan^{-1}\left(\frac{1}{2}\right) = \int_0^{1/2} \frac{1}{1+x^2} dx.$$

1. Estimate the value of θ with the trapezoidal rule using n = 4 subintervals.

2. The actual value is approximately 0.46365. What is the percent error in your estimate in problem 1?

3. Estimate the value of θ with Simpson's rule using n = 2 subintervals. Find the percent error in your estimate.