Math 1552, Integral Calculus

Test 3 Review, Sections 10.1-10.7

1. Terminology review: complete the following statements.
(a) A geometric series has the general form \qquad The series converges when \qquad and diverges when \qquad
(b) A p-series has the general form \qquad The series converges when \qquad and diverges when \qquad To show these results, we can use the \qquad test.
(c) The harmonic series \qquad and telescoping series \qquad
(d) If you want to show a series converges, compare it to a \qquad series that also converges. If you want to show a series diverges, compare it to a \qquad series that also diverges.
(e) If the direct comparison test does not have the correct inequality, you can instead use the \qquad test. In this test, if the limit is a \qquad number (not equal to \qquad), then both series converge or both series diverge.
(f) In the ratio and root tests, the series will \qquad if the limit is less than 1 and
\qquad if the limit is greater than 1 . If the limit equals 1 , then the test is \qquad
(g) If $\lim _{n \rightarrow \infty} a_{n}=0$, then what do we know about the series $\sum_{n} a_{n}$? \qquad
(h) A power series has the general form: _-_-_-__-_ To find the radius of convergence R, use either the \qquad or \qquad test. The series converges \qquad when $|x-c|<R$. To find the interval of convergence, don't forget to check the \qquad
2. Let $\left\{a_{n}\right\}$ be a sequence of non-negative terms. Are the following statements always true or sometimes false?
(a) If $\lim _{n \rightarrow \infty} a_{n}=L$, then the series $\sum_{n} a_{n}=L$.
(b) If $\left\{a_{n}\right\}$ is decreasing and bounded, then $\lim _{n \rightarrow \infty} a_{n}=$ g.l.b..
(c) If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\left\{a_{n}\right\}$ converges to 0 .
(d) If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum_{n} a_{n}$ converges.
(e) If $\sum_{n} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
(f) If $\sum_{n} a_{n}$ diverges, then $\lim _{n \rightarrow \infty} a_{n} \neq 0$.
(g) If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n} a_{n}$ diverges.
(h) If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\left\{a_{n}\right\}$ diverges.
(i) If $\int_{1}^{\infty} f(x) d x=L$, where $0<L<\infty$, then $\sum_{n} f(n)=L$.
(j) If $\sum_{n} b_{n}$ converges and $a_{n}>b_{n}$ for all $n \geq 1$, then $\sum_{n} a_{n}$ also converges.
(k) If $\sum_{n} b_{n}$ diverges and $a_{n}>b_{n}$ for all $n \geq 1$, then $\sum_{n} a_{n}$ also diverges.
(l) If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$ and $\sum_{n} b_{n}$ diverges, then $\sum_{n} a_{n}$ also diverges.
3. For each sequence below, find the l.u.b. and g.l.b., and determine if the sequence is monotonic.

$$
\{\sin (n \pi)\}, \quad\left\{(-1)^{n+1} \frac{1}{5^{n}}\right\}, \quad\left\{\frac{n+1}{n}\right\}
$$

4. Determine whether or not each sequence converges. If so, find the limit.
(a) $\left\{\frac{2 n^{2}}{\sqrt{9 n^{4}+1}}\right\}$
(b) $\left\{\left(1-\frac{1}{8 n}\right)^{n}\right\}$
(c) $\left\{\frac{n!}{e^{n}}\right\}$
(d) $\left\{\left(\frac{n}{n+5}\right)^{n}\right\}$
5. Use series to write the repeating decimals (a) $0.31313131 \ldots$ and (b) $0.3 \overline{27}$ as rational numbers.
6. Find the sum of each convergent series below, or explain why the series diverges.
(a) $\sum_{k=7}^{\infty} \frac{1}{(k-3)(k+1)}$
(b) $\sum_{k=0}^{\infty}(-1)^{k}$
(c) $\sum_{k=2}^{\infty} \frac{2^{k}+1}{3^{k+1}}$
(d) $\sum_{n=2}^{\infty} \frac{2^{2 n-1}}{4 \cdot 10^{n-1}}$
(e) $\sum_{n=2}^{\infty}\left(\frac{3}{n^{2}}-\frac{3}{(n+1)^{2}}\right)$
(f) $\sum_{n=1}^{\infty} \frac{3 n+4}{n^{3}+3 n^{2}+2 n}$
7. Find a closed formula for the following sequences.
(a) $\left\{6,2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \frac{2}{81}, \ldots\right\}$
(b) $\left\{\frac{5}{1}, \frac{8}{2}, \frac{11}{6}, \frac{14}{24}, \frac{17}{120}, \ldots\right\}$
8. Determine if each series below converges or diverges. JUSTIFY YOUR ANSWER FULLY using any of the convergence tests from class.
(a) $\sum_{k=1}^{\infty} \frac{e^{k}}{4+e^{2 k}}$
(b) $\sum_{k=1}^{\infty} \frac{5 k^{2}+8}{7 k^{2}+6 k+1}$
(c) $\sum_{k=1}^{\infty} \frac{3^{2 k}}{8^{k}-3}$
(d) $\sum_{k=1}^{\infty} \frac{k+2}{\sqrt{k^{5}+4}}$
(e) $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^{3}}$
(f) $\sum_{k=1}^{\infty} k \tan \left(\frac{1}{k}\right)$
(g) $\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\ldots$
(h) $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{n^{2}-1}}$
(i) $\sum_{k=1}^{\infty} \frac{\ln k}{k^{4}}$
(j) $\sum_{k=1}^{\infty} \frac{(2 k)^{k}}{k!}$
(k) $\sum_{k=1}^{\infty}\left(\frac{k}{k+1}\right)^{2 k^{2}}$
(l) $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)}{4^{n} 2^{n} n!}$
9. Suppose $r>0$. Find the values of r, if any, for which $\sum_{k=1}^{\infty} \frac{r^{k}}{k^{r}}$ converges.
10. Determine whether the following alternating series converge absolutely, converge conditionally, or diverge. Justify your answers using the tests we discussed in class.
(a) $\sum_{k=2}^{\infty}(-1)^{k+1} \frac{3 k}{\sqrt{k^{3}+4}}$
(b) $\sum_{k=2}^{\infty}(-1)^{k} \frac{k}{k^{4}-1}$
(c) $\sum_{k=0}^{\infty}(-1)^{k} \frac{k}{5^{k}+2^{k}}$
(d) $\sum_{k=2}^{\infty}(-1)^{k} \frac{1}{k \ln k \sqrt{\ln \ln k}}$
(e) $\sum_{n=2}^{\infty}(-1)^{n} \frac{n}{n^{2}-1}$
(f) $\sum_{n=3}^{\infty}(-1)^{n} \frac{n-2}{n+2}$
(g) $\sum_{n=4}^{\infty}(-1)^{n} \frac{1}{n-3}$
(h) $\sum_{n=0}^{\infty}(-5)^{-n}$
(i) $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln (n)}{\sqrt{n}}$
(j) $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{n^{2}-n}$
11. Find the radius and interval of convergence of the following power series:
(a) $\sum_{k=2}^{\infty}\left(\frac{k}{k-1}\right) \frac{(x+2)^{k}}{2^{k}}$
(b) $\sum_{k=1}^{\infty} \frac{k}{3^{k}\left(k^{2}+1\right)}(x-5)^{k}$
(c) $\sum_{k=1}^{\infty} \frac{5^{k}}{\sqrt{k}}(3-2 x)^{k}$
(d) $\sum_{k=1}^{\infty} \frac{(-1)^{k} a^{k}}{k^{2}}(x-a)^{k}$, where $a \neq 0$
12. Determine if each series below converges or diverges. JUSTIFY YOUR ANSWER FULLY using any of the convergence tests from class.
(a) $\sum_{n=1}^{\infty} \frac{(2 n+1)!}{n^{2 n}}$
(b) $\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left(1+\frac{1}{2 n}\right)^{n^{2}}$
(c) $\sum_{n=1}^{\infty} \frac{2^{n}+n^{2}}{3^{n}+n}$
(d) $\sum_{n=2}^{\infty} \frac{\left(1+(-1)^{n}\right) n^{2}}{(n-1)^{3}}$
(e) $\sum_{k=1}^{\infty} k^{2} e^{-k^{2}}$
13. Find all p such that the infinite series $\sum_{n=3}^{\infty} \frac{1}{n^{p} \ln (n)}$ converges.
14. Consider the power series $f(x)=\sum_{n=0}^{\infty}\left(\frac{x^{2}+2}{6}\right)^{n}$.
(a) Find the interval of convergence for this series.
(b) For all values of x that lie in the interval of convergence, what is the sum of this series as a function of x ?
15. Determine how many terms must be used to determine the sum of the entire series with an error of less than 0.01
(a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{2}+1}$
(b) $\sum_{n=0}^{\infty}\left(-\frac{1}{3}\right)^{n}$
(c) $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n}$
16. For which value of p does the following series converge to 7 ?

$$
\sum_{k=0}^{\infty} \frac{3}{2^{p k}}
$$

Answers

2. Statements (b), (c), (e), (g), and (k) are true.
3. (a) l.u.b. $=$ g.l.b. $=0$, monotonic
(b) l.u.b. $=\frac{1}{5}$, g.l.b. $=-\frac{1}{25}$, not monotonic
(c) l.u.b. $=2$, g.l.b. $=1$, monotonic
4. (a) converges to $\frac{2}{3}$, (b) converges to $e^{-1 / 8}$, (c) diverges, (d) converges to $\frac{1}{e^{5}}$
5. (a) $\frac{31}{99}$, (b) $\frac{108}{330}$
6. (a) ≈ 0.1899, (b) diverges, (c) $\frac{1}{2}$, (d) $\frac{1}{3}$, (e) $\frac{3}{4}$, (f) $\frac{5}{2}$
7. (a) $a_{n}=2 \cdot 3^{2-n}, n \geq 1$ (b) $a_{n}=\frac{2+3 n}{n!}, n \geq 1$
8. (a) converges by integral test, (b) diverges by divergence test, (c) diverges by direct comparison, (d) converges by direct or limit comparison, (e) converges by integral test, (f) diverges by divergence test, (g) converges by direct comparison, (h) converges by limit comparison, (i) converges by direct comparison, (j) diverges by ratio test, (k) converges by root test, (l) converges by ratio test
9. converges when $0<r<1$
10. (a) converges conditionally (limit comparison and alternating series test), (b) converges absolutely (limit comparison), (c) converges absolutely (ratio test), (d) converges conditionally (integral test and alternating series test), (e) conditionally convergent (direct comparison and alternating series test), (f) diverges (nth term test), (g) conditionally convergent (direct comparison and alternating series test), (h) absolutely convergent (geometric), (i) conditionally convergent (integral test and alternating series test), (j) absolutely convergent (limit comparison test)
11. (a) $R=2, I . C .=(-4,0)$, (b) $R=3, I . C .=[2,8)(\mathrm{c}) R=\frac{1}{10}, I . C .=\left(\frac{7}{5}, \frac{8}{5}\right]$, $R=\frac{1}{|a|}, I . C .=\left[a-\frac{1}{|a|}, a+\frac{1}{|a|}\right]$,
12. (a) converges by ratio test, (b) converges by root test, (c) converges by limit comparison test, (d) diverges by direct comparison, (e) converges by the integral test
13. converges for $p>1$, diverges for $p \leq 1$
14. I.C. $=(-2,2)$, sum is $\frac{6}{4-x^{2}}$
15. (a) 9 , (b) 4, (c) 100
16. $p=\log _{2}(7)-2 \approx 0.8074$
