$$
\text { Worksheet } 11 \text { (Last one!) }
$$

1. Let $\vec{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \vec{u}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$, and $W=\operatorname{span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$. Find the projection of $\vec{y}=\left[\begin{array}{r}2 \\ -1 \\ 3\end{array}\right]$ onto W^{\perp}, then use your answer to find an orthonormal basis for W^{\perp}.
Solution: Finding the projection of \vec{y} onto W^{\perp}, is the same as finding the component of \vec{y} orthogonal to W, which is $\vec{y}-\operatorname{proj}_{W} \vec{y}$. So, we need to find $\operatorname{proj}_{W} \vec{y}$, which will require an orthogonal basis for W (or see answer to problem 2). Our current basis vectors \vec{u}_{1} and \vec{u}_{2} are (as they must be) linearly independent, but not orthogonal, since $\vec{u}_{1} \cdot \vec{u}_{2}=1 \neq 0$. We can find an orthogonal basis using Gram-Schmidt, though. Let the first orthogonal basis vector be $\vec{v}_{1}=\vec{u}_{1}$. Then the second orthogonal basis vector will be

$$
\vec{v}_{2}=\vec{u}_{2}-\frac{\vec{u}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{r}
1 / 2 \\
-1 / 2 \\
2
\end{array}\right] .
$$

For the sake of removing fractions, we will actually let $\vec{v}_{2}=\left[\begin{array}{r}1 \\ -1 \\ 4\end{array}\right]$ (just multiplying the result above by the scalar 2), though this is not necessary of course. Then, to find $\operatorname{proj}_{W} \vec{y}$, we do

$$
\operatorname{proj}_{W} \vec{y}=\frac{\vec{y} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}+\frac{\vec{y} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{v}_{2}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\frac{15}{18}\left[\begin{array}{r}
1 \\
-1 \\
4
\end{array}\right]=\left[\begin{array}{r}
4 / 3 \\
-1 / 3 \\
10 / 3
\end{array}\right] .
$$

Hence, the projection of \vec{y} onto W^{\perp} is

$$
\operatorname{proj}_{W} \perp \vec{y}=\vec{y}-\operatorname{proj}_{W} \vec{y}=\left[\begin{array}{r}
2 \\
-1 \\
3
\end{array}\right]-\left[\begin{array}{r}
4 / 3 \\
-1 / 3 \\
10 / 3
\end{array}\right]=\left[\begin{array}{r}
2 / 3 \\
-2 / 3 \\
-1 / 3
\end{array}\right]
$$

As to finding an orthonormal basis for W^{\perp} : note that W is a plane (2 dimensional subspace) in \mathbb{R}^{3}, so W^{\perp} is just a line (1 dimensional subspace) in \mathbb{R}^{3}. So, we only need a single unit vector that is in W^{\perp}
in order to have an orthonormal basis for W^{\perp}. We already have such a vector: $\operatorname{proj}_{W} \perp \vec{y}$ (note that $\left\|\operatorname{proj}_{W} \perp \vec{y}\right\|=1$, so it is already a unit vector).
2. Let

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right], \vec{z}=\left[\begin{array}{l}
1 \\
3 \\
8 \\
2
\end{array}\right]
$$

Find the distance between $\operatorname{col} A$ and \vec{z} without finding an orthogonal basis for $\operatorname{col} A$.
Solution: The easiest way to answer this is probably to note that the question is equivalent to asking what the least squares error is for the problem $A \vec{x}=\vec{z}$, since the closest point to \vec{z} in $\operatorname{col} A$ is $\operatorname{proj}_{\operatorname{col} A} \vec{z}=\hat{z}$, the distance between \vec{z} and $\operatorname{col} A$ is the length of the vector $\vec{z}-\hat{z}$, and the least squares solution \hat{x} satisfies $A \hat{x}=\hat{z}$. So, we will begin by solving the normal equations for the least squares solution \hat{x}, which are $A^{T} A \hat{x}=A^{T} \vec{z}$. We find

$$
A^{T} A=\left[\begin{array}{lll}
4 & 2 & 3 \\
2 & 2 & 1 \\
3 & 1 & 3
\end{array}\right], A^{T} \vec{z}=\left[\begin{array}{r}
14 \\
4 \\
13
\end{array}\right] .
$$

So, to solve the normal equations, we construct the augmented matrix for the system and row reduce. This gives

$$
\left[\begin{array}{rrrr}
4 & 2 & 3 & 14 \\
2 & 2 & 1 & 4 \\
3 & 1 & 3 & 13
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

Hence, our least squares solution is $\hat{x}=\left[\begin{array}{r}3 \\ -2 \\ 2\end{array}\right]$. To find \hat{z} we simply multiply $A \hat{x}=\left[\begin{array}{l}1 \\ 3 \\ 5 \\ 5\end{array}\right]$, this tells us that $\vec{z}-\hat{z}=\left[\begin{array}{r}0 \\ 0 \\ 3 \\ -3\end{array}\right]$. Then the distance between \vec{z} and $\operatorname{col} A$ is

$$
\|\vec{z}-\hat{z}\|=\sqrt{18}=3 \sqrt{2} .
$$

Note that we could have solved problem 1 in a similar way through the least squares solution, rather than finding an orthogonal basis for W.

