
Worksheet 11 (Last one!)
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Solution: Finding the projection of ~y onto W

?, is the same as find-
ing the component of ~y orthogonal to W , which is ~y � projW~y. So,
we need to find projW~y, which will require an orthogonal basis for W
(or see answer to problem 2). Our current basis vectors ~u
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are (as they must be) linearly independent, but not orthogonal, since
~u

1

·~u
2

= 1 6= 0. We can find an orthogonal basis using Gram-Schmidt,
though. Let the first orthogonal basis vector be ~v
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For the sake of removing fractions, we will actually let ~v
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(just multiplying the result above by the scalar 2), though this is not
necessary of course. Then, to find projW~y, we do

projW~y =
~y · ~v

1

~v

1

· ~v
1

~v

1

+
~y · ~v

2

~v

2

· ~v
2

~v

2

=
1

2

2

4
1
1
0

3

5+
15

18

2

4
1

�1
4

3

5 =

2

4
4/3

�1/3
10/3

3

5
.

Hence, the projection of ~y onto W

? is

projW?~y = ~y � projW~y =
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As to finding an orthonormal basis for W

?: note that W is a plane
(2 dimensional subspace) in R3, so W

? is just a line (1 dimensional
subspace) in R3. So, we only need a single unit vector that is in W

?
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in order to have an orthonormal basis for W?. We already have such
a vector: projW?~y (note that ||projW?~y|| = 1, so it is already a unit
vector).
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Find the distance between colA and ~z without finding an orthogonal
basis for colA.
Solution: The easiest way to answer this is probably to note that the
question is equivalent to asking what the least squares error is for the
problem A~x = ~z, since the closest point to ~z in colA is proj

colA~z = ẑ,
the distance between ~z and colA is the length of the vector ~z� ẑ, and
the least squares solution x̂ satisfies Ax̂ = ẑ. So, we will begin by
solving the normal equations for the least squares solution x̂, which
are A

T
Ax̂ = A

T
~z. We find
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So, to solve the normal equations, we construct the augmented matrix
for the system and row reduce. This gives
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Hence, our least squares solution is x̂ =
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5. To find ẑ we simply

multiply Ax̂ =
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775, this tells us that ~z � ẑ =
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distance between ~z and colA is

||~z � ẑ|| =
p
18 = 3

p
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Note that we could have solved problem 1 in a similar way through
the least squares solution, rather than finding an orthogonal basis for
W .
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