Worksheet 3

1. Find the solution of the following system and write it in parametric vector form. Give a geometric description of the solution set.

$$x_1 + 3x_2 + x_3 = 1$$

-4x₁ - 9x₂ + 2x₃ = -1
- 3x₂ - 6x₃ = -3

Solution: We first write the augmented matrix for this system. It is

Γ	1	3	1	1	
	-4	-9	2	-1	.
L	0	-3	-6	-3	

We can row reduce by first replacing row 2 with itself plus 4 times row 1, then replace row 3 with itself plus row 2. At this point we are in echelon form, with

$$\left[\begin{array}{rrrrr} 1 & 3 & 1 & 1 \\ 0 & 3 & 6 & 3 \\ 0 & 0 & 0 & 0 \end{array}\right] \ .$$

Note that there is no pivot in the rightmost column, so the system is consistent, and there is also no pivot in the column corresponding to x_3 , so it is a free variable. To put in reduced echelon form, we scale row 2 by dividing by 3, then replace row 1 with itself minus 3 times row 2. This gives

$$\left[\begin{array}{rrrrr} 1 & 0 & -5 & -2 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right] \ .$$

So, the solutions are $x_1 = -2+5x_3$, $x_2 = 1-2x_3$, x_3 free. In parametric vector form, we would have

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix} .$$

Geometrically, the solution is represented by a line in \mathbb{R}^3 going through the point (-2, 1, 0) and parallel to the vector $\begin{bmatrix} 5 & -2 & 1 \end{bmatrix}$.

2. For the following situations, determine (a) whether the equation $A\vec{x} = \vec{0}$ has a nontrivial solution and (b) whether the equation $A\vec{x} = \vec{b}$ has at least one solution for every possible \vec{b} in \mathbf{R}^m , and explain:

- (i) A is a 3×3 matrix with 3 pivots. Solution: (a) A has a pivot in every column, so there are no nontrivial solutions since there are no free variables. (b) A has a pivot in every row, so there is at least one solution for every \vec{b} in \mathbf{R}^3 - in fact, there is exactly one solution for every \vec{b} , since there are no free variables.
- (ii) A is a 3×3 matrix with 2 pivots. Solution: (a) A does not have a pivot in every column, so there are nontrivial solutions since there are free variables. (b) A does not have a pivot in every row, so there is not a solution for each \vec{b} in \mathbb{R}^3 .
- (iii) A is a 3×2 matrix with 2 pivots. Solution: (a) A has a pivot in every column, so there are no nontrivial solutions since there are no free variables. (b) A does not have a pivot in every row, so there is not a solution for each \vec{b} in \mathbb{R}^3 .
- (iv) A is a 2×4 matrix with 2 pivots. Solution: (a) A does not have a pivot in every column, so there are nontrivial solutions since there are free variables. (b) A has a pivot in every row, so there is at least one solution for every \vec{b} in \mathbf{R}^3 - in fact, there are infinite solutions for every \vec{b} , since there are free variables.