Worksheet 3

1. Find the solution of the following system and write it in parametric vector form. Give a geometric description of the solution set.

$$
\begin{gathered}
x_{1}+3 x_{2}+x_{3}=1 \\
-4 x_{1}-9 x_{2}+2 x_{3}=-1 \\
-3 x_{2}-6 x_{3}=-3
\end{gathered}
$$

Solution: We first write the augmented matrix for this system. It is

$$
\left[\begin{array}{rrrr}
1 & 3 & 1 & 1 \\
-4 & -9 & 2 & -1 \\
0 & -3 & -6 & -3
\end{array}\right] .
$$

We can row reduce by first replacing row 2 with itself plus 4 times row 1 , then replace row 3 with itself plus row 2 . At this point we are in echelon form, with

$$
\left[\begin{array}{llll}
1 & 3 & 1 & 1 \\
0 & 3 & 6 & 3 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Note that there is no pivot in the rightmost column, so the system is consistent, and there is also no pivot in the column corresponding to x_{3}, so it is a free variable. To put in reduced echelon form, we scale row 2 by dividing by 3 , then replace row 1 with itself minus 3 times row 2. This gives

$$
\left[\begin{array}{rrrr}
1 & 0 & -5 & -2 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

So, the solutions are $x_{1}=-2+5 x_{3}, x_{2}=1-2 x_{3}, x_{3}$ free. In parametric vector form, we would have

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
5 \\
-2 \\
1
\end{array}\right] .
$$

Geometrically, the solution is represented by a line in \mathbf{R}^{3} going through the point $(-2,1,0)$ and parallel to the vector $\left[\begin{array}{lll}5 & -2 & 1\end{array}\right]$.
2. For the following situations, determine (a) whether the equation $A \vec{x}=$ $\overrightarrow{0}$ has a nontrivial solution and (b) whether the equation $A \vec{x}=\vec{b}$ has at least one solution for every possible \vec{b} in \mathbf{R}^{m}, and explain:
(i) A is a 3×3 matrix with 3 pivots. Solution: (a) A has a pivot in every column, so there are no nontrivial solutions since there are no free variables. (b) A has a pivot in every row, so there is at least one solution for every \vec{b} in \mathbf{R}^{3} - in fact, there is exactly one solution for every \vec{b}, since there are no free variables.
(ii) A is a 3×3 matrix with 2 pivots. Solution: (a) A does not have a pivot in every column, so there are nontrivial solutions since there are free variables. (b) A does not have a pivot in every row, so there is not a solution for each \vec{b} in \mathbf{R}^{3}.
(iii) A is a 3×2 matrix with 2 pivots. Solution: (a) A has a pivot in every column, so there are no nontrivial solutions since there are no free variables. (b) A does not have a pivot in every row, so there is not a solution for each \vec{b} in \mathbf{R}^{3}.
(iv) A is a 2×4 matrix with 2 pivots. Solution: (a) A does not have a pivot in every column, so there are nontrivial solutions since there are free variables. (b) A has a pivot in every row, so there is at least one solution for every \vec{b} in \mathbf{R}^{3} - in fact, there are infinite solutions for every \vec{b}, since there are free variables.

