1. Consider the vectors

$$
\vec{v}_{1}=\left[\begin{array}{r}
4 \\
-7 \\
9
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{r}
1 \\
5 \\
-3
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}
6 \\
3 \\
3
\end{array}\right]
$$

Note that the sum of \vec{v}_{1} and twice \vec{v}_{2} is equal to \vec{v}_{3}. Denote A as the matrix $A=\left[\begin{array}{lll}\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}\end{array}\right]$. Answer the following questions, with justification:
(a) Is the set of vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ linearly independent?
(b) Without row reducing, does A have a pivot in every column?
(c) Does the linear transform $T(\vec{x})=A \vec{x}$ map \mathbb{R}^{3} onto \mathbb{R}^{3} ? Is this linear transform one-to-one?
(d) Again, without row reducing, find a non-trivial solution of $A \vec{x}=\overrightarrow{0}$.
2. Let the linear transform $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first reflect points across the horizontal x_{1} axis and then reflect them across the line $x_{2}=x_{1}$. Find the standard matrix representation of T.

