1. Consider the matrices

$$
A=\left[\begin{array}{rr}
2 & 5 \\
-3 & 1
\end{array}\right], B=\left[\begin{array}{rr}
4 & -5 \\
3 & k
\end{array}\right]
$$

For what value(s) of k, if any, do matrices A and B commute?
Solution: The two matrices commute if $A B=B A$. So, compute $A B$ and $B A$ to find

$$
A B=\left[\begin{array}{rr}
23 & -10+5 k \\
-9 & 15+k
\end{array}\right], \quad B A=\left[\begin{array}{rr}
23 & 15 \\
6-3 k & 15+k
\end{array}\right] .
$$

The entries at $(1,1)$ and $(2,2)$ are equal no matter what k is. The entries at $(1,2)$ are equal only if $k=5$, and the entries at $(2,1)$ are also only equal if $k=5$. So, the matrices commute if and only if $k=5$.
2. Suppose P is an invertible matrix, and $A=P B P^{-1}$, where A and B are also matrices. Solve for B in terms of A.
Solution: To solve for B, we want to remove the P and P^{-1} that are sandwiching it. To do this, we can left multiply both sides of the equation by P^{-1} and right multiply both sides by P. This leaves

$$
P^{-1} A P=P^{-1} P B P^{-1} P .
$$

On the right hand side, the two factors of $P^{-1} P$ are both equal to the identity, so that just gives

$$
P^{-1} A P=I B I=B,
$$

and that is the answer.
3. Find the inverse of the following matrix, if it exists:

$$
\left[\begin{array}{rrr}
1 & 0 & -2 \\
-3 & 1 & 4 \\
2 & -3 & 4
\end{array}\right]
$$

Solution: Create the augmented matrix $\left[A \mid I_{3}\right]$. Then row reduce the entire matrix so that the left hand side that starts as A is converted into the identity matrix I_{3}. Here are some steps that do this: 1) replace row 2 by itself plus 3 times row 1,2) replace row 3 by itself minus 2
times row 1,3) replace row 3 with itself plus 3 times row 2 (at this point A is in echelon form), 4) replace row 2 with itself plus row 3,5) replace row 1 with itself plus row 3 , and 6) scale row 3 by dividing by 2. This gives

$$
\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 8 & 3 & 1 \\
0 & 1 & 0 & 10 & 4 & 1 \\
0 & 0 & 1 & 7 / 2 & 3 / 2 & 1 / 2
\end{array}\right]
$$

the left half is I_{3}, so the right half of this matrix is then A^{-1}.
4. Answer the following short questions, justifying your answers. Note that all referenced matrices are $n \times n$ square.
(a) Matrix A has one column that is 7 times another column. Is A invertible? Solution: If one of the columns of A is 7 times another column, then the columns are not linearly independent, so there is not a pivot in every column, so A is not invertible.
(b) A is the standard matrix of a linear transform $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that is one-to-one. Is A invertible? Solution: Since the transform T is one-to-one, there are no free variables in A, so there is a pivot in every column, so A is invertible.
(c) A is not invertible. How many solutions are there to the equation $A \vec{x}=\overrightarrow{0}$? Solution: Since A is not invertible, it does not have a pivot in every column, so there are free variables, and there are infinite solutions to $A \vec{x}=\overrightarrow{0}$.
(d) There are some vectors in \mathbb{R}^{n} that are not in the span of the columns of A. Is A invertible? Solution: Since there are vectors that are not in the span of the columns of A, there are some vectors for which $A \vec{x}=\vec{b}$ is inconsistent (has no solution), so there is not a pivot in every row of A, so there is not a pivot in every column, so A is not invertible.

