Worksheet 5

1. Consider the matrices

$$
A=\left[\begin{array}{rr}
2 & 5 \\
-3 & 1
\end{array}\right], B=\left[\begin{array}{rr}
4 & -5 \\
3 & k
\end{array}\right] .
$$

For what value(s) of k, if any, do matrices A and B commute?
2. Suppose P is an invertible matrix, and $A=P B P^{-1}$, where A and B are also matrices. Solve for B in terms of A.
3. Find the inverse of the following matrix, if it exists:

$$
\left[\begin{array}{rrr}
1 & 0 & -2 \\
-3 & 1 & 4 \\
2 & -3 & 4
\end{array}\right]
$$

4. Answer the following short questions, justifying your answers. Note that all referenced matrices are $n \times n$ square.
(a) Matrix A has one column that is 7 times another column. Is A invertible?
(b) A is the standard matrix of a linear transform $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that is one-to-one. Is A invertible?
(c) A is not invertible. How many solutions are there to the equation $A \vec{x}=\overrightarrow{0}$?
(d) There are some vectors in \mathbb{R}^{n} that are not in the span of the columns of A. Is A invertible?
