## Worksheet 9

1. Diagonalize the matrix

$$
A=\left[\begin{array}{rr}
6 & 3 \\
-4 & -1
\end{array}\right]
$$

if possible, or explain why $A$ cannot be diagonalized.
Solution: First we find eigenvalues, by satisfying the characteristic equation

$$
\operatorname{det}\left(\left[\begin{array}{cc}
6-\lambda & 3 \\
-4 & -1-\lambda
\end{array}\right]\right)=0 .
$$

Expanding the determinant gives $(6-\lambda)(-1-\lambda)+12=\lambda^{2}-5 \lambda+$ $6=(\lambda-3)(\lambda-2)$. Hence, the roots of the characteristic polynomial are at $\lambda=3,2$. Since there are two distinct eigenvalues here for our $2 \times 2$ matrix, we know right away that it is diagonalizable, as the eigenvectors are guaranteed to be linearly independent. To find eigenvectors, we start with $\lambda=3$ and solve

$$
\left[\begin{array}{cc}
6-3 & 3 \\
-4 & -1-3
\end{array}\right] \vec{v}=\overrightarrow{0} .
$$

This matrix row reduces easily to

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],
$$

so $v_{2}$ is free and $v_{1}=-v_{2}$; hence, an eigenvector for eigenvalue 3 is $\vec{v}=(-1,1)$, or any multiple thereof. For the second eigenvector we solve

$$
\left[\begin{array}{cc}
6-2 & 3 \\
-4 & -1-2
\end{array}\right] \vec{v}=\overrightarrow{0} .
$$

This matrix row reduces easily to

$$
\left[\begin{array}{cc}
1 & 3 / 4 \\
0 & 0
\end{array}\right]
$$

so $v_{2}$ is free and $v_{1}=-3 / 4 v_{2}$; hence, an eigenvector for eigenvalue 2 is $\vec{v}=(-3 / 4,1)$, or any multiple thereof. We will in fact use a multiple here to remove any fractions, and choose $\vec{v}=(-3,4)$. Thus, matrix $A$ has been diagonalized via

$$
P=\left[\begin{array}{cc}
-1 & -3 \\
1 & 4
\end{array}\right], D=\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right]
$$

2. Answer the following short questions, being sure to explain answers fully:
(a) Can a $3 \times 3$ matrix have all complex eigenvalues?

Solution: No, since complex eigenvalues always come in pairs (complex conjugates), there will always be an even number of complex eigenvalues, if any. A $3 \times 3$ matrix has three eigenvalues therefore, so they could not all be complex, as that would indicate an odd number of complex eigenvalues.
(b) If $2 \times 2$ matrix $A$ is not invertible, can it have complex eigenvalues?
Solution: No. Because $A$ is not invertible, it has 0 as an eigenvalue, leaving only a single other eigenvalue undetermined. Since complex eigenvalues always show up in pairs, that single remaining eigenvalue cannot be complex.
(c) If $A$ is a real matrix with complex eigenvalue $\lambda=a+i b$ (where $b \neq$ 0 ), can the eigenvector $\vec{v}$ associated with $\lambda$ be purely imaginary; that is, can $\vec{v}=i \vec{x}$, with $\vec{x}$ in $\mathbb{R}^{n}$ ?
Solution: No. If $\lambda$ is an eigenvalue of $A$ with eigenvector $\vec{v}$, then $A \vec{v}=\lambda \vec{v}$. If $A$ is real but $\vec{v}$ is purely imaginary, then $A \vec{v}$ is also purely imaginary. But in this case, $\lambda \vec{v}=(a+i b) i \vec{x}=-b \vec{x}+i a \vec{x}$, which definitely has a real part, namely $-b \vec{x}$, since $b \neq 0$ and $\vec{x} \neq \overrightarrow{0}$. So, if $\vec{v}$ were purely imaginary, $A \vec{v}$ could not possibly equal $\lambda \vec{v}$ (given a complex $\lambda$ ), so $\vec{v}$ could not be an eigenvector of $A$ with eigenvalue $\lambda$.
(d) If $2 \times 2$ real matrix $A$ has purely imaginary eigenvalues $i b$ and $-i b$ (and assume $b>0$ ), by what angle does the similar rotation/scaling matrix $C=P^{-1} A P$ discussed in class rotate vectors, and by what factor does it scale them? Be sure to answer for both of the eigenvalues.
Solution: The similar rotation/scaling matrix for the general case of complex eigenvalue $a-i b$ is

$$
C=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right] .
$$

So for our eigenvalue $-i b$,

$$
C=\left[\begin{array}{cc}
0 & -b \\
b & 0
\end{array}\right]=b\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

So, the scaling is by the factor $b$ (this is the case for both eigenvalues, as we can always factor out $b$ from both). The rotation matrix is

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

which represents rotation by $\pi / 2$ counterclockwise; for the eigenvalue $i b$, this would be rotation by $\pi / 2$ clockwise, as all the signs of our rotation matrix would flip.

