Math 1552, Integral Calculus

Section 5.1-5.3: Riemann Sums

1. You are driving when all of a sudden, you see traffic stopped in front of you. You slam the brakes to come to a stop. While your brakes are applied, the velocity of the car is measured, and you obtain the following measurements:

Time since applying breaks (sec) $\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$
$\begin{array}{llllllll}\text { Velocity of car (in ft/sec) } & 88 & 60 & 40 & 25 & 10 & 0\end{array}$
Using the points given, determine upper and lower bounds for the total distance traveled before the car came to a stop.
2. Consider the function $f(x)=x+2 x^{2}$ on the interval [0,2]. Using a midpoint estimate with $n=4$ subintervals, estimate the average value of f.
3. A marketing company is trying a new campaign. The campaign lasts for three weeks, and during this time, the company finds that it gains customers as a function of time according to the formula:

$$
C(t)=5 t-t^{2},
$$

where t is time in weeks and the number of customers is given in thousands.
Using the general form of the definite integral,

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(x_{i}^{*}\right)
$$

calculate the average number of customers gained during the three-week campaign.

