Orthogonal projection

Find A so that T_{A} is orthogonal projection onto

$$
W=\operatorname{Span}\left\{\left(\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{r}
3 \\
-1 \\
2
\end{array}\right)\right\}
$$

Find B so that T_{B} is orthogonal projection onto

$$
L=\operatorname{Span}\left\{\left(\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right)\right\}
$$

Answer the following questions (without calculation!).

1. What are A^{2} and B^{2} ?
2. What are A^{-1} and B^{-1} ?
3. What are $A B$ and $B A$?
4. Is A or B diagonalizable?
5. What are the eigenvalues of A and B (with algebraic multiplicity)?
6. Is A similar to B ?

Best approximation

$W=$ subspace of \mathbb{R}^{n}

Fact. The projection y_{W} is the point in W closest to y. In other words:

$$
\left\|y-y_{w}\right\|<\|y-w\|
$$

for any w in W other than y_{w}.
Why?

Best approximation

Problem. Find the distance from e_{1} to $W=\operatorname{Span}\left\{\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$.

Find a best "solution" to $A x=e_{1}$ where

$$
A=\left(\begin{array}{rr}
1 & 1 \\
0 & 1 \\
-1 & 1
\end{array}\right)
$$

