Orthogonal projection

Find A so that T_A is orthogonal projection onto

$$W = \operatorname{Span}\left\{ \left(\begin{array}{c} 1\\1\\-1 \end{array} \right), \left(\begin{array}{c} 3\\-1\\2 \end{array} \right) \right\}$$

Find B so that T_B is orthogonal projection onto

$$L = \operatorname{Span}\left\{ \left(\begin{array}{c} 1\\ 1\\ -1 \end{array} \right) \right\}$$

Answer the following questions (without calculation!).

- 1. What are A^2 and B^2 ?
- 2. What are A^{-1} and B^{-1} ?
- 3. What are AB and BA?
- 4. Is A or B diagonalizable?
- 5. What are the eigenvalues of A and B (with algebraic multiplicity)?
- 6. Is A similar to B?

Best approximation

 $W = subspace of \mathbb{R}^n$

Fact. The projection y_W is the point in W closest to y. In other words:

$$||y - y_w|| < ||y - w||$$

for any w in W other than y_w .

Why?

Best approximation

Problem. Find the distance from e_1 to $W = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}.$

Find a best "solution" to $Ax = e_1$ where

$$A = \left(\begin{array}{rrr} 1 & 1\\ 0 & 1\\ -1 & 1 \end{array}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで