Worksheet 6

1. Consider the matrix

$$A = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 5 & -9 \\ 4 & 1 & 2 \end{bmatrix} \ .$$

Find bases for the column space of A and the null space of A. What are the dimensions of colA and nullA? Describe colA and nullA geometrically. What is the rank of A?

2. Consider the vectors

$$\vec{b}_1 = \begin{bmatrix} 1\\5\\-3 \end{bmatrix}, \ \vec{b}_2 = \begin{bmatrix} -3\\-7\\5 \end{bmatrix}, \ \vec{x} = \begin{bmatrix} 4\\10\\-7 \end{bmatrix}$$

Explain why the set $\beta = \{\vec{b}_1, \vec{b}_2\}$ can be considered as a basis for a subspace H. Geometrically describe H. Is \vec{x} in H? If so, give the coordinates of \vec{x} relative to the basis β .

- 3. Answer the following short questions, justifying your answers fully:
 - (a) If M is a 3×5 matrix, and its column space is \mathbb{R}^3 , does that mean its null space is \mathbb{R}^2 ? If so, explain why, if not, explain what the null space of M actually is.
 - (b) Suppose β is a set of vectors that is a basis for a subspace H. If I create a new set of vectors α that includes all of the vectors in β, but also includes one more vector that is a linear combination of some of the vectors of β, is the span of the set α equal to H?
 - (c) Is it possible for the null space of an $m \times n$ matrix to be \mathbb{R}^n ? If so, under what circumstances?