Worksheet 6

1. Consider the matrix

$$
A=\left[\begin{array}{rrr}
3 & 2 & -1 \\
1 & 5 & -9 \\
4 & 1 & 2
\end{array}\right]
$$

Find bases for the column space of A and the null space of A. What are the dimensions of $\operatorname{col} A$ and null A ? Describe $\operatorname{col} A$ and null A geometrically. What is the rank of A ?
2. Consider the vectors

$$
\vec{b}_{1}=\left[\begin{array}{r}
1 \\
5 \\
-3
\end{array}\right], \vec{b}_{2}=\left[\begin{array}{r}
-3 \\
-7 \\
5
\end{array}\right], \vec{x}=\left[\begin{array}{r}
4 \\
10 \\
-7
\end{array}\right] .
$$

Explain why the set $\beta=\left\{\vec{b}_{1}, \vec{b}_{2}\right\}$ can be considered as a basis for a subspace H. Geometrically describe H. Is \vec{x} in H ? If so, give the coordinates of \vec{x} relative to the basis β.
3. Answer the following short questions, justifying your answers fully:
(a) If M is a 3×5 matrix, and its column space is \mathbb{R}^{3}, does that mean its null space is \mathbb{R}^{2} ? If so, explain why, if not, explain what the null space of M actually is.
(b) Suppose β is a set of vectors that is a basis for a subspace H. If I create a new set of vectors α that includes all of the vectors in β, but also includes one more vector that is a linear combination of some of the vectors of β, is the span of the set α equal to H ?
(c) Is it possible for the null space of an $m \times n$ matrix to be \mathbb{R}^{n} ? If so, under what circumstances?

